과제정보
We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.
참고문헌
- Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications", Mech. Syst. Signal Process., 147(107077), 1-45. https://doi.org/10.1016/j.ymssp.2020.107077
- Fan, X., Li, J. and Hao, H. (2021), "Review of piezoelectric impedance based structural health monitoring: Physics-based and data-driven methods", Adv. Struct. Eng., 24(16), 3609-3626. https://doi.org/10.1177/13694332211038444
- Farrar, C.R. (2001), "Historical overview of structural health monitoring", Lecture Notes on Structural Health Monitoring Using Statistical Pattern Recognition; Los Alamos Dynamics, Los Alamos, NM, USA.
- Giurgiutiu, V. and Zagrai, A. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monitor., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
- Ho, D.D., Ngo, T.M. and Kim, J.T. (2014), "Impedance-based damage monitoring of steel column connection: numerical simulation", Struct. Monitor. Maint., Int. J., 1(3), 339-356. https://doi.org/10.12989/smm.2014.1.3.339
- Ho, D.D., Huynh, T.C., Luu, T.H.T. and Le, T.C. (2021), "Electro-mechanical impedance-based prestress force monitoring in prestressed concrete structures", In: Structural Health Monitoring and Engineering Structures, 148, 413-423. https://doi.org/10.1007/978-981-16-0945-9_33
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2017), "Advances and challenges in impedance-based structural health monitoring", Struct. Monitor. Maint., Int. J., 4(4), 301-329. https://doi.org/10.12989/smm.2017.4.4.301
- Lee, J.J., Yun, C.B., Lee, J.W. and Jung, H.Y. (2005), "Neutral network-based damage detection for bridges considering errors in baseline finite element model", J. Sound Vib., 280, 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monitor. Maint., Int. J., 1(1), 1-45. https://doi.org/10.12989/smm.2014.1.1.001
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
- Liu, X. and Jiang, Z. (2009), "Design of a PZT patch for measuring longitudinal mode impedance in the assessment of truss structure damage", Smart Mater. Struct., 18(125017). https://doi.org/10.1088/0964-1726/18/12/125017
- Min, J., Park, S., Yun, C.B., Lee, C.G. and Lee, C. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity", Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012
- Nguyen, T.T., Phan, T.T.V., Ho, D.D., Pradhan, A.M.S, and Huynh, T.C. (2022), "Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring", Eng. Struct., 259(114172), 1-18. https://doi.org/10.1016/j.engstruct.2022.114172
- Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35, 451-463. https://doi.org/10.1177/05831024030356001
- Park, S., Ahmad, S., Yun, C.B. and Roh, Y. (2006), "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques", Experim. Mech., 46(5), 609-618. https://doi.org/10.1007/s11340-006-8734-0
- Rao, A.S., Nguyen, T., Palaniswami, M. and Ngo, T. (2021), "Vision-based automated crack detection using convolutional neural networks for condition assessment of infrastructure", Struct. Health Monitor., 20(4), 2124-2142. https://doi.org/10.1177/1475921720965445
- Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2017), "Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection", Struct. Monitor. Maint., Int. J., 4(3), 237-253. https://doi.org/10.12989/smm.2017.4.3.237
- Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intell. Mater. Syst. Struct., 6, 134-139. https://doi.org/10.1177/1045389X9500600117
- Yao, Y., Tung, S.T.E. and Glisic, B. (2014), "Crack detection and characterization techniques-An overview", Struct. Control Health Monitor., 21(12), 1387-1413. https://doi.org/10.1002/stc.1655
- Zuo, C., Feng, X., Zhang, Y., Lu, L. and Zhou, J. (2017), "Crack detection in pipelines using multiple electromechanical impedance sensors", Smart Mater. Struct., 26(10). https://doi.org/10.1088/1361-665X/aa7ef