DOI QR코드

DOI QR Code

Noncontact strain sensing in cement-based material using laser-induced fluorescence from nanotube-based skin

  • Meng, Wei (Department of Civil and Environmental Engineering, Rice University) ;
  • Bachilo, Sergei M. (Department of Chemistry, Rice University) ;
  • Parol, Jafarali (Energy and Building Research Center, Kuwait Institute for Scientific Research) ;
  • Weisman, R. Bruce (Department of Chemistry, Rice University) ;
  • Nagarajaiah, Satish (Department of Civil and Environmental Engineering, Rice University)
  • Received : 2022.06.05
  • Accepted : 2022.09.17
  • Published : 2022.09.25

Abstract

This study explores the use of the recently developed "strain-sensing smart skin" (S4) method for noncontact strain measurements on cement-based samples. S4 sensors are single-wall carbon nanotubes dilutely embedded in thin polymer films. Strains transmitted to the nanotubes cause systematic shifts in their near-infrared fluorescence spectra, which are analyzed to deduce local strain values. It is found that with cement-based materials, this method is hampered by spectral interference from structured near-infrared cement luminescence. However, application of an opaque blocking layer between the specimen surface and the nanotube sensing film enables interference-free strain measurements. Tests were performed on cement, mortar, and concrete specimens with such modified S4 coatings. When specimens were subjected to uniaxial compressive stress, the spectral peak separations varied linearly and predictably with induced strain. These results demonstrate that S4 is a promising emerging technology for measuring strains down to ca. 30 𝜇𝜀 in concrete structures.

Keywords

Acknowledgement

The authors are grateful to the Kuwait Institute of Scientific Research for research support.

References

  1. Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E. and Weisman, R.B. (2002), "Structureassigned optical spectra of single-walled carbon nanotubes", Sci., 298(5602), 2361-2366. https://doi.org/10.1126/science.1078727
  2. Benedetti, M., Fontanari, V. and Zonta, D. (2011), "Structural health monitoring of wind towers: remote damage detection using strain sensors", Smart Mater. Struct., 20(5), 1-13. https://doi.org/10.1088/0964-1726/20/5/055009
  3. Chung, D.D.L. (2000), "Cement reinforced with short carbon fibers: a multifunctional material", Compos. Part B: Eng., 31(6-7), 511-526. https://doi.org/10.1016/S1359-8368(99)00071-2
  4. Colombo, M., Domaneschi, M. and Ghisi, A. (2016), "Existing concrete dams: loads definition and finite element models validation", Struct. Monitor. Maint., Int. J., 3(2), 129-144. https://doi.org/10.12989/smm.2016.3.2.129
  5. Davis, M.A., Bellemore, D.G. and Kersey, A.D. (1997), "Distributed fiber Bragg grating strain sensing in reinforced concrete structural components", Cement Concrete Compos., 19(1), 45-57. https://doi.org/10.1016/s0958-9465(96)00042-x
  6. Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E.V. (2004), "Nanotube film based on single-wall carbon nanotubes for strain sensing", Nanotechnology, 15(3), 379-382. https://doi.org/10.1088/0957-4484/15/3/026
  7. Fu, X. and Chung, D.D.L. (1996), "Self-monitoring of fatigue damage in carbon fiber reinforced cement", Cement Concrete Res., 26(1), 15-20. https://doi.org/10.1016/0008-8846(95)00184-0
  8. Gucunski, N., Kee, S., La, H., Basily, B. and Maher, A. (2015), "Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform", Struct. Monitor. Maint., Int. J., 2(1), 19-34. http://doi.org/10.12989/smm.2015.2.1.019
  9. Hill, K.O. and Meltz, G. (1997), "Fiber Bragg grating technology fundamentals and overview", J. Lightwave Technol., 15(8), 1263-1276.https://doi.org/10.1109/50.618320
  10. Leeuw, T.K., Tsyboulski, D.A., Nikolaev, P.N., Bachilo, S.M., Arepalli, S. and Weisman, R.B. (2008), "Strain measurements on individual single-walled carbon nanotubes in a polymer host: structuredependent spectral shifts and load transfer", Nano Letters, 8(3), 826-831. https://doi.org/10.1021/nl072861c
  11. Li, Z., Dharap, P., Nagarajaiah, S., Barrera, E.V. and Kim, J.D. (2004), "Carbon nanotube film sensors", Adv. Mater., 16(7), 640-643. https://doi.org/10.1002/adma.200306310
  12. Li, H., Xiao, H.G. and Ou, J.P. (2006), "Effect of compressive strain on electrical resistivity of carbon blackfilled cement-based composites", Cement Concrete Compos., 28(9), 824-828. https://doi.org/10.1016/j.cemconcomp.2006.05.004
  13. Li, H., Xiao, H. and Ou, J. (2008), "Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition", Compos. Sci. Technol., 68(9), 2114-2119. https://doi.org/10.1016/j.compscitech.2008.03.007
  14. Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monitor. Maint., Int. J., 1(1), 1-45. https://doi.org/10.12989/smm.2014.1.1.001
  15. Loh, K.J., Kim, J., Lynch, J.P., Kam, N.W.S. and Kotov, N.A. (2007), "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing", Smart Mater. Struct., 16(2), 429-438. https://doi.org/10.1088/0964-1726/16/2/022
  16. Meng, W., Pal, A., Bachilo, S.M., Weisman, R.B. and Nagarajaiah, S. (2022), "Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation", Scientific Reports, 12(1), 1-12. https://doi.org/10.1038/s41598-022-15332-1
  17. Meng, W., Bachilo, S.M., Parol, J., Nagarajaiah, S. and Weisman, R.B. (2022), "Near-infrared photoluminescence of Portland cement", Scientific Reports, 12(1), 1-6. https://doi.org/10.1038/s41598-022-05113-1
  18. Mirzamohammadi, S. and Mazloom, M. (2021), "Monitoring the required energy for the crack propagation of fiber-reinforced cementitious composite", Struct. Monitor. Maint., Int. J., 8(3), 279-294. https://doi.org/10.12989/smm.2021.8.3.279
  19. Myers, D.R. (2010), "MEMS Resonant Strain Sensor Integration", Ph.D. Dissertation, University of California, Berkeley, CA, USA.
  20. Nish, A., Hwang, J.Y., Doig, J. and Nicholas, R.J. (2007), "Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers", Nature Nanotechnol., 2(10), 640-646. https://doi.org/10.1038/nnano.2007.290
  21. Obitayo, W. and Liu, T. (2012), "A review: carbon nanotube-based piezoresistive strain sensors", J. Sensors, 2012. https://doi.org/10.1155/2012/652438
  22. O'connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C. and Ma, J. (2002), "Band gap fluorescence from individual single-walled carbon nanotubes", Science, 297(5581), 593-596. https://doi.org/10.1126/science.1072631
  23. Reich, S., Thomsen, C. and Maultzsch, J. (2004), Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley & Sons.
  24. Rodriguez, G., Casas, J.R. and Villalba, S. (2015), "SHM by DOFS in civil engineering: A review", Struct. Monitor. Maint., Int. J., 2(4), 357-382. https://doi.org/10.12989/smm.2015.2.4.357
  25. Ryu, D. and Loh, K.J. (2014), "Multi-modal sensing using photoactive thin films", Smart Mater. Struct., 23(8), 085011. https://doi.org/10.1088/0964-1726/23/8/085011
  26. Sun, P., Bachilo, S.M., Weisman, R.B. and Nagarajaiah, S. (2015), "Carbon nanotubes as non-contact optical strain sensors in smart skins", J. Strain Anal. Eng. Des., 50(7), 505-512. https://doi.org/10.1177/0309324715597414
  27. Sun, P., Bachilo, S.M., Lin, C.W., Weisman, R.B. and Nagarajaiah, S. (2019a), "Noncontact strain mapping using laser-induced fluorescence from nanotube-based smart skin", J. Struct. Eng., (1), 04018238, 1-20. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002227
  28. Sun, P., Bachilo, S.M., Lin, C.W., Nagarajaiah, S. and Weisman, R.B. (2019b), "Dual-layer nanotube-based smart skin for enhanced noncontact strain sensing", Struct. Control Health Monitor., 26(1), e2279, 1-11. https://doi.org/10.1002/stc.2279
  29. Weisman, R.B. and Bachilo, S.M. (2003), "Dependence of optical transition energies on structure for singlewalled carbon nanotubes in aqueous suspension: an empirical Kataura plot", Nano Letters, 3(9), 1235-1238. https://doi.org/10.1021/nl034428i
  30. Withey, P.A., Vemuru, V.S.M., Bachilo, S.M., Nagarajaiah, S. and Weisman, R.B. (2012), "Strain paint: Noncontact strain measurement using single-walled carbon nanotube composite coatings", Nano Letters, 12(7), 3497-3500. https://doi.org/10.1021/nl301008m
  31. Xiao, H., Li, H. and Ou, J. (2011), "Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam", Sensors Actuators A: Phys., 167(2), 581-587. https://doi.org/10.1016/j.sna.2011.03.012
  32. Yang, L. and Han, J. (2000), "Electronic structure of deformed carbon nanotubes", Phys. Rev. Lett., 85(1), 154-157. https://doi.org/10.1103/PhysRevLett.85.154