Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (2022R1A2C10038891161782064340101). The datasets used in this paper were granted by the committee of the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020). The authors would like to thank for the opportunity provided by IPC-SHM 2020.
References
- Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaria, J., Fadhel, M.A., Al-Amidie, M. and Farhan, L. (2021), "Review of deep learning: concepts, CNN architectures, challenges, applications, future directions", J. Big Data, 8 (1), 1-74. https://doi.org/10.1186/s40537-021-00444-8
- Bailly, A., Blanc, C., Francis, E., Guillotin, T., Jamal, F., Wakim, B. and Roy, P. (2022), "Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models", Comput. Methods Programs Biomed., 213, 106504. https://doi.org/10.1016/j.cmpb.2021.106504
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer, B.F. and Li, H. (2021), "The 1st international project competition for structural health monitoring (IPC-SHM, 2020): A summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Barbedo, J.G.A. (2018), "Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification", Comput. Electron Agric., 153, 46-53. https://doi.org/10.1016/j.compag.2018.08.013
- Battista, R. and Pfeil, M. (1999), "Fatigue cracks induced by traffic loading on steel bridges' slender orthotropic decks", The Ninth International Conference on Computational Methods and Experimental Measurements", WIT Transact. Modell. Simul., 21, 37-46. https://www.witpress.com/elibrary/wit-transactions-on-modelling-and-simulation/22/4967
- Campbell, L.E., Connor, R.J., Whitehead, J.M. and Washer, G.A. (2021), "Human factors affecting visual inspection of fatigue cracking in steel bridges", Struct. Infrastruct. Eng., 17(11), 1447-1458. https://doi.org/10.1080/15732479.2020.1813783
- Cha, Y.-J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civ. Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018), "Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs", IEEE Trans. Pattern. Anal. Mach. Intell., 40(4), 834-848. Doi: 10.1109/TPAMI.2017.2699184
- Dong, C., Li, L., Yan, J., Zhang, Z., Pan, H. and Catbas, F.N. (2021), "Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder-decoder network", Sensors, 21(12). https://doi.org/10.3390/s21124135
- Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Autom. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Dung, C.V., Sekiya, H., Hirano, S., Okatani, T. and Miki, C. (2019), "A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks", Autom. Constr., 102, 217-229. https://doi.org/10.1016/j.autcon.2019.02.013
- Gallwey, T.J. (1998a), "Evaluation and control of industrial inspection: Part I-Guidelines for the practitioner", Int. J. Ind. Ergon., 22(1-2), 37-49. https://doi.org/10.1016/S0169-8141(97)00066-8
- Gallwey, T.J. (1998b), "Evaluation and control of industrial inspection: Part II-The scientific basis for the guide", Int. J. Ind. Ergon., 22(1-2), 51-65. https://doi.org/10.1016/S0169-8141(97)00067-X
- Lee, J.K., Bae, D.S., Lee, S.P. and Lee, J.H. (2014), "Evaluation on defect in the weld of stainless steel materials using nondestructive technique", Fusion Eng. Des., 89(7-8), 1739-1745. https://doi.org/10.1016/j.fusengdes.2013.12.026
- Mutlib, N.K., Baharom, S.B., El-Shafie, A. and Nuawi, M.Z. (2016), "Ultrasonic health monitoring in structural engineering: buildings and bridges", Struct. Control Health Monit., 23(3), 409-422. https://doi.org/10.1002/stc.1800
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: Convolutional networks for biomedical image segmentation", Proceedings of International Conference on Medical Image Computing and ComputerAssisted Intervention, Munich, Germany, October. https://doi.org/10.1007/978-3-319-24574-4_28
- Ruder, S. (2016), "An overview of gradient descent optimization algorithms", arXiv preprint, arXiv:1609.04747. https://doi.org/10.48550/arXiv.1609.04747
- See, J.E. (2012), "Visual inspection: a review of the literature", Report SAND2012-8590; Accessed on 2022.03.04. https://www.osti.gov/servlets/purl/1055636
- Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Wang, X. and Wu, N. (2019), "Crack identification at welding joint with a new smart coating sensor and entropy", Mech. Syst. Signal Process., 124, 65-82. https://doi.org/10.1016/j.ymssp.2019.01.044
- Wang, Y., Fu, Z., Ge, H., Ji, B. and Hayakawa, N. (2019), "Cracking reasons and features of fatigue details in the diaphragm of curved steel box girder", Eng. Struct., 201, 109767. https://doi.org/10.1016/j.engstruct.2019.109767
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2018), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civ. Infrastruct. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yao, L., Dong, Q., Jiang, J. and Ni, F. (2020), "Deep reinforcement learning for long-term pavement maintenance planning", Comput.-Aided Civ. Infrastruct. Eng., 35(11), 1230-1245. https://doi.org/10.1111/mice.12558
- Ye, X., Jin, T. and Yun, C. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24 (5), 567-585. https://doi.org/10.12989/sss.2019.24.5.567
- Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X. (2019), "Object detection with deep learning: a review", IEEE Trans. Neural Netw. Learn. Syst., 30(11), 3212-3232. Doi: 10.1109/TNNLS.2018.2876865
- Zhu, X.P., Rizzo, P., Marzani, A. and Bruck, J. (2010), "Ultrasonic guided waves for nondestructive evaluation/structural health monitoring of trusses", Meas. Sci. Technol., 21(4). https://doi.org/10.1088/0957-0233/21/4/045701