DOI QR코드

DOI QR Code

Effects of Baicalein on hydrogen peroxide productions in RAW 264.7 macrophages stimulated by lipoteichoic acid

Baicalein이 Lipoteichoic acid로 자극된 RAW 264.7 mouse macrophages의 hydrogen peroxide 생성에 미치는 영향

  • Oh, Chi-Seok (Department of Pathology, College of Korean Medicine, Gachon University) ;
  • Park, Wansu (Department of Pathology, College of Korean Medicine, Gachon University)
  • 오치석 (가천대학교 한의과대학 병리학교실) ;
  • 박완수 (가천대학교 한의과대학 병리학교실)
  • Received : 2022.08.12
  • Accepted : 2022.09.25
  • Published : 2022.09.30

Abstract

Objectives : The aim of this study was to investigate the effect of Baicalein (BA) on the production of hydrogen peroxide in lipoteichoic acid-stimulated RAW 264.7 mouse macrophages. Methods : Lipoteichoic acid-stressed RAW 264.7 mouse macrophages were incubated with baicalein at concentrations of 50 and 100 µM. Incubation time is 30 minutes, 2 h, 12 h, and 18 h. After incubation, The production of hydrogen peroxide in RAW 264.7 mouse macrophages was measured with dihydrorhodamine 123 assay. Streptococcus aureus lipoteichoic acid and Streptococcus pyogenes lipoteichoic acid were used as cell-stimulating lipoteichoic acid. Cell viabilities were measured with a modified MTT assay. Berberine, indomethacin, and gallic acid were incubated for the same time as the comparative materials. Results : BA at the concentration of 50 and 100 µM did not show cytotoxicity on RAW 264.7 mouse macrophages for 24 h incubation. For 30 minutes, 2 h, 12 h, and 18 h incubation, BA at the concentration of 50 and 100 µM significantly inhibited the production of hydrogen peroxide in RAW 264.7 mouse macrophages stimulated by Streptococcus aureus lipoteichoic acid (p < 0.05); also, BA at the concentration of 50 and 100 µM also inhibited the productions of hydrogen peroxide in RAW 264.7 mouse macrophages stimulated by Streptococcus pyogenes lipoteichoic acid significantly (p < 0.05). Conclusions : BA might have anti-bacterial activity related to its inhibition of hydrogen peroxide production in lipoteichoic acid-stimulated RAW 264.7 mouse macrophages.

Keywords

References

  1. Wei Y, Joyce LR, Wall AM, Guan Z, Palmer KL. Streptococcus pneumoniae, S. mitis, and S. oralis Produce a Phosphatidylglycerol-Dependent, ltaS-Independent Glycerophosphate-Linked Glycolipid. mSphere. 2021 ; 6(1) : e01099-20.
  2. Grundling A, Schneewind O. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol. 2007 ; 189(6) : 2521-30. https://doi.org/10.1128/JB.01683-06
  3. Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis. 2002 ; 2(3) :171-9. https://doi.org/10.1016/S1473-3099(02)00226-8
  4. Hattar K, Grandel U, Moeller A, Fink L, Iglhaut J, Hartung T, Morath S, Seeger W, Grimminger F, Sibelius U. Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation. Crit Care Med. 2006 ; 34(3) : 835-41. https://doi.org/10.1097/01.CCM.0000202204.01230.44
  5. Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol. 2021 ; 11 : 620339. https://doi.org/10.3389/fimmu.2020.620339
  6. Arora SK, Naqvi N, Alam A, Ahmad J, Alsati BS, Sheikh JA, Kumar P, Mitra DK, Rahman SA, Hasnain SE, Ehtesham NZ. Mycobacterium smegmatis Bacteria Expressing Mycobacterium tuberculosis-Specific Rv1954A Induce Macrophage Activation and Modulate the Immune Response. Front Cell Infect Microbiol. 2020 ; 10 : 564565. https://doi.org/10.3389/fcimb.2020.564565
  7. Newman SL. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol. 1999 ; 7(2) : 67-71. https://doi.org/10.1016/S0966-842X(98)01431-0
  8. Jantsch J, Chikkaballi D, Hensel M. Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev. 2011 ; 240(1) : 185-95. https://doi.org/10.1111/j.1600-065X.2010.00981.x
  9. Steevels TA, Meyaard L. Immune inhibitory receptors: essential regulators of phagocyte function. Eur J Immunol. 2011 ; 41(3) : 575-87. https://doi.org/10.1002/eji.201041179
  10. Chen Y, Liu T, Wang K, Hou C, Cai S, Huang Y, Du Z, Huang H, Kong J, Chen Y. Baicalein Inhibits Staphylococcus aureus Biofilm Formation and the Quorum Sensing System In Vitro. PLoS One. 2016 ; 11(4) : e0153468. https://doi.org/10.1371/journal.pone.0153468
  11. Park W, Chang MS, Kim H, Choi HY, Yang WM, Kim DR, Park EH, Park SK. Cytotoxic effect of gallic acid on testicular cell lines with increasing H2O2 level in GC-1 spg cells. Toxicol In Vitro. 2008; 22(1) :159-63. https://doi.org/10.1016/j.tiv.2007.08.010
  12. Park WS. Effect of Water Extract from Artemisiae Argi Folium on Mouse Macrophage Stimulated by LPS. Kor. J. Herbology. 2009 ; 24(1) : 151-7.
  13. Lee JY, Lee YJ, Park WS. Anti-inflammatory Effects of Fermented Houttuyniae Herba Water Extract on LPS-induced Mouse Macrophage. Kor. J. Herbology. 2010 ; 25(3) : 27-34.
  14. Park W. Agastache rugosa modulates productions of inflammatory mediatorsin RAW 264.7 stimulated by lipopolysaccharide. Kor. J. Herbology. 2021 ; 36(5) : 117-23.
  15. Park WS. Effect of Wogonin on Intracellular Hydrogen Peroxide Production of TM4 Mouse Sertoli cells stressed with polyinosinic:polycytidylic acid. Kor. J. Herbology. 2021 ; 36(5) : 117-23.
  16. Park W. Effect of Scutellariae Radix Water Extract on Hydrogen Peroxide Production in RAW 264.7 Mouse Macrophages. Kor. J. Herbology.. 2009 ; 26(1) : 53-8.
  17. Wang H, Hui KM, Xu S, Chen Y, Wong JT, Xue H. Two flavones from Scutellaria baicalensis Georgi and their binding affinities to the benzodiazepine site of the GABAA receptor complex. Pharmazie. 2002 ; 57(12) : 857-8.
  18. de Carvalho RS, Duarte FS, de Lima TC. Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav Brain Res. 2011 ; 221(1) : 75-82. https://doi.org/10.1016/j.bbr.2011.02.038
  19. Chen Y, Wang J, Hong DY, Chen L, Zhang YY, Xu YN, Pan D, Fu LY, Tao L, Luo H, Shen XC. Baicalein has protective effects on the 17β-estradiol-induced transformation of breast epithelial cells. Oncotarget. 2017 ; 8(6) : 10470-10484. https://doi.org/10.18632/oncotarget.14433
  20. Austin JR, Kirkpatrick BJ, Rodriguez RR, Johnson ME, Lantvit DD, Burdette JE. Baicalein Is a Phytohormone that Signals Through the Progesterone and Glucocorticoid Receptors. Horm Cancer. 2020 ; 11(2) : 97-110. https://doi.org/10.1007/s12672-020-00382-6
  21. Deschamps JD, Kenyon VA, Holman TR. Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem. 2006 ; 14(12) : 4295-301. https://doi.org/10.1016/j.bmc.2006.01.057
  22. Kragballe K, Fallon JD. Increased aggregation and arachidonic acid transformation by psoriatic platelets: evidence that platelet-derived 12-hydroxy-eicosatetraenoic acid increases keratinocyte DNA synthesis in vitro. Arch Dermatol Res. 1986 ; 278(6) : 449-53. https://doi.org/10.1007/BF00455162
  23. Zhong X, Surh YJ, Do SG, Shin E, Shim KS, Lee CK, Na HK. Baicalein Inhibits Dextran Sulfate Sodium-induced Mouse Colitis. J Cancer Prev. 2019 Jun;24(2):129-138. https://doi.org/10.15430/JCP.2019.24.2.129
  24. Hsieh CJ, Hall K, Ha T, Li C, Krishnaswamy G, Chi DS. Baicalein inhibits IL-1beta- and TNF-alpha-induced inflammatory cytokine production from human mast cells via regulation of the NF-kappaB pathway. Clin Mol Allergy. 2007 ; 5 : 5. https://doi.org/10.1186/1476-7961-5-5
  25. Xiong Z, Jiang B, Wu PF, Tian J, Shi LL, Gu J, Hu ZL, Fu H, Wang F, Chen JG. Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade. Biol Pharm Bull. 2011 ; 34(2) : 253-9. https://doi.org/10.1248/bpb.34.253
  26. Kim YJ, Kim HJ, Lee JY, Kim DH, Kang MS, Park W. Anti-Inflammatory Effect of Baicalein on Polyinosinic-Polycytidylic Acid-Induced RAW 264.7 Mouse Macrophages. Viruses. 2018 ; 10(5) : 224. https://doi.org/10.3390/v10050224
  27. Li J, Yang Y, Wang H, Ma D, Wang H, Chu L, Zhang Y, Gao Y. Baicalein Ameliorates Myocardial Ischemia Through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPKS/NF-κB Pathway and Regulation of Ca2+ Homeostasis by L-type Ca2+ Channels. Front Pharmacol. 2022 Mar 16;13:842723.
  28. Zhang X, Qin Y, Ruan W, Wan X, Lv C, He L, Lu L, Guo X. Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytother Res. 2021 Aug;35(8):4442-4455. https://doi.org/10.1002/ptr.7149