DOI QR코드

DOI QR Code

2-Terminal Perovskite/SHJ 탠덤 태양전지 기술 검토

Review of 2-terminal Perovskite/SHJ Tandem Junction Solar Cell Technology

  • 장민규 (에너지융합학과, 청주대학교) ;
  • 전영우 (에너지융합학과, 청주대학교) ;
  • 김민제 (에너지융합학과, 청주대학교) ;
  • 이준신 (정보통신공학부, 성균관대학교) ;
  • 박진주 (에너지융합학과, 청주대학교)
  • Jang, Minkyu (Department of Energy Convergence, Cheongju University) ;
  • Jeon, Youngwoo (Department of Energy Convergence, Cheongju University) ;
  • Kim, Minje (Department of Energy Convergence, Cheongju University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Jinjoo (Department of Energy Convergence, Cheongju University)
  • 투고 : 2020.09.08
  • 심사 : 2020.09.20
  • 발행 : 2022.09.30

초록

c-Si solar cells currently account for more than 90% of the solar energy market. Research on tandem junction solar cells to overcome efficiency limitations is drawing attention at a time when new technologies are being developed to secure the price competitiveness of silicon solar cells. Among several candidate materials for silicon-based tandem solar cells, perovskite has recently been studied as it is suitable for the ease of process as well as for its properties as a tandem solar cell material. In this study, we want to review the research trends and technology limitations of 2-T Perovskite/SHJ tandem junction solar cells.

키워드

과제정보

본 연구는 2019년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구(20193020010650, 인쇄 한계 극복을 위한 전극형성/모듈 일체화 기술 개발)일환으로 수행되었습니다. 이 논문은 2021~2022년도 청주대학교 연구장학 지원에 의한 것임.

참고문헌

  1. Kim, H., Nam, S., Jeong, J., Lee, S., Seo, J., Han, H. and Kim, Y., "Organic Solar Cells Based on Conjugated Polymers : History and Recent Advances," Korean J. Chem. Eng, 31, 1095-1104 (2014). https://doi.org/10.1007/s11814-014-0154-8
  2. International Technology Roadmap for Photovoltaic (ITRPV) 2021 Results, Eight Edition (2021).
  3. International Technology Roadmap for Photovoltaic (ITRPV) 2016 Results, Eight Edition (2017).
  4. A. Richter, M. Hermle, S. W. Glunz, "Reassessment of the limiting efficiency for crystalline silicon solar cells," IEEE Journal of Photovoltaics, 3(4), 1184-1191 (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351
  5. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Uk Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, "Iodide management in formamidinium- lead-halide-based perovskite layers for efficient solar cells," Science, 356(6345), 1376-1379 (2017). https://doi.org/10.1126/science.aan2301
  6. De Vos. A, "Detailed balance limit of the efficiency of tandem solar cells," J. Phys, D: Appl. Phys, 13(5), 839 (1980). https://doi.org/10.1088/0022-3727/13/5/018
  7. Lee, J.-W., Hsieh, Y.-T., Marco, N. D., Bae, S.-H., Han, Q., Yang, Y.,"Halide perovskite for tandem solar cells," J.Phys. Chem. Lett., 8(9), 1999-2011 (2017). https://doi.org/10.1021/acs.jpclett.7b00374
  8. S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel, B. Rech, "Monolithic perovskite/silicon- heterojunction tandem solar cells processed at low temperature," Energy Environ. Sci., 9, 81-88 (2016). https://doi.org/10.1039/C5EE02965A
  9. J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, "Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2," J. Phys. Chem. Lett., 7, 1, 161-166 (2016). https://doi.org/10.1021/acs.jpclett.5b02686
  10. K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
  11. Z. Qiu, Z. Xu, N. Li, N. Zhou, Y. Chen, X. Wan, J. Liu, N. Li, X. Hao, P. Bi, Q. Chen, B. Cao, H. Zhou, "Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber," Nano Energy, 53, 798-807 (2018). https://doi.org/10.1016/j.nanoen.2018.09.052
  12. L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte, S. Albrecht, E. Crossland, B. Stannowski, C. Case, H.J. Snaith, R. Schlatmann, "Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%," Adv. Energy Mater., 9(14), 1803241 (2019). https://doi.org/10.1002/aenm.201803241
  13. E. Lamanna, F. Matteocci, E. Calabro, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, S. Pescetelli, S. Bellani, A.E.D.R. Castillo, F. Bonaccorso, M. Tucci, A.D. Carlo, "Mechanically Stacked, Two- Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%," Joule, 4(4), 865-881 (2020). https://doi.org/10.1016/j.joule.2020.01.015
  14. B. Chen, J.Y. Zhengshan, S. Manzoor, S. Wang, W. Weigand, Z. Yu, G. Yang, Z. Ni, X. Dai, Z.C. Holman, J. Huang, "Blade-coated perovskites on textured silicon for 26%- efficient monolithic perovskite/silicon tandem solar cells," Joule, 4(4), 850-864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
  15. E. Aydin, J. Liu, E. Ugur, R. Azmi, G.T. Harrison, Y. Hou, B. Chen, S. Zhumagali, M. De Bastiani, M. Wang, W. Raja, T.G. Allen, A.u. Rehman, A.S. Subbiah, M. Babics, A. Babayigit, F.H. Isikgor, K. Wang, E. Van Kerschaver, L. Tsetseris, E.H. Sargent, F. Laquai, S. De Wolf, "Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells," Energy Environ. Sci., 14, 4377-4390 (2021). https://doi.org/10.1039/D1EE01206A
  16. J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle, T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," J. Appl. Phys, 113(23), 234310 (2013). https://doi.org/10.1063/1.4810900
  17. B. Macco, J. Melskens, N.J. Podraza, K. Arts, C. Pugh, O. Thomas, W.M.M. Kessels, "Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si: H after rapid thermal annealing," J. Appl. Phys. 122(3), 035302 (2017). https://doi.org/10.1063/1.4994795
  18. D. Pascual Sanchez, "Crystalline silicon Heterojunction solar cells," in, Universitat Politecnica de Catalunya (2015).
  19. J.J.A.P.L. Meier, R. Fl. fluckiger, H. Keppner, A. Shah, 65, 860 (1994).
  20. P. Alpuim, V. Chu, J.P. Conde, "Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition," J. Vac. Sci. Technol., A 19, 2328-2334 (2001). https://doi.org/10.1116/1.1385910
  21. H. Keppner, P. Torres, J. Meier, R. Platz, D. Fischer, U. Kroll, S. Dubail, J.A. Anna Selvan, N. Pellaton Vaucher, Y. Ziegler, R. Tscharner, C. Hof, N. Beck, M. Goetz, P. Pernet, M. Goerlitzer, N. Wyrsch, J. Veuille, J. Cuperus, A. Shah, J. Pohl, The "Micromorph" Cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing?, MRS Proc., 452, 865-876 (1996). https://doi.org/10.1557/PROC-452-865
  22. J. Werner, A. Walter, E. Rucavado, S.-J. Moon, D. Sacchetto, M. Rienaecker, R. Peibst, R. Brendel, X. Niquille, S. De Wolf, P. Loper, M. Morales-Masis, S. Nicolay, B. Niesen, C. Ballif, "Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells," Appl. Phys. Lett., 109, 233902 (2016). https://doi.org/10.1063/1.4971361
  23. A.D. Afrasiab, F.E. Khan, A.D. Subhan, S.D. Khan, M.S. Khan, M.S. Ahmad, M. Rehan, M. Noman, "Optimization of efficient monolithic perovskite/silicon tandem solar cell," Optik. Mat. Sci., 164573 (2020).
  24. A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurisic, W.W.-f. Leung, J. Hao, W.K. Chan, C. Surya, "Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers," Journal of Materials Chemistry A, 3, 9223-9231 (2015). https://doi.org/10.1039/C4TA05070C