DOI QR코드

DOI QR Code

Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter

초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가

  • Kim, Chungseok (Department of Materials Science and Engineering, Chosun University)
  • 김정석 (조선대학교 신소재공학과)
  • Received : 2022.07.06
  • Accepted : 2022.09.02
  • Published : 2022.09.30

Abstract

The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1I1A3A04036903).

References

  1. J. D. Achenbach : Inter. J. Sol. Struct., 37 (2000) 13. https://doi.org/10.1016/S0020-7683(99)00074-8
  2. R. B. Tompson : J. Nondest. Eval., 15 (1996) 163. https://doi.org/10.1007/BF00732043
  3. J. B. Kim and K. Y. Jhang : J. the Korean Soc. for Nondest. Test., 37 (2017) 115.
  4. C. S. Kim, T. H. Nam, S. H. Choi, and K. Y. Jhang : J. the Korean Soc. for Nondest. Test., 32 (2012) 20.
  5. J. B. Kim, C. Cheon, K. Y. Jhang, and C. S. Kim : J. the Korean Soc. for Nondest. Test., 33 (2013) 193.
  6. J. H. Cantrell and W. T. Yost : Int. J. Fatigue, 23 (2001) 487. https://doi.org/10.1016/S0142-1123(01)00162-1
  7. J. H. Cantrell and W. T. Yost : Appl. Phys. Lett., 77 (2000) 1952. https://doi.org/10.1063/1.1311951
  8. D. C. Hurley, D. Balzar, P. T. Purtscher, and K. W. Hollman : J. Appl. Phys., 83 (1998) 4584. https://doi.org/10.1063/1.367241
  9. K. E. Stahlkopf, R. E. Smith, W. L. Server, and R. A. Wullaert, ASTM STP 601 (1975) 291.
  10. K. Y. Jhang : IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47 (2000) 540.
  11. N. Gope, A. Chatterjee, T. Mukherjee, and D. S. Sarma : Metall. Trans., 24A (1993) 315.
  12. A. M. Adbel-Latif, J. M. Corbett, and D. M. R. Taplin : Met. Sci., 16 (1982) 90. https://doi.org/10.1179/030634582790427181
  13. Y. J. Joo, D. H. Shin, J. M. Do, and K. T. Hong : Proc. 12th Conf. on Mechanical Behaviors of Materials, (1998) 563.
  14. N. S. Cheruvu : Metall. Trans., 20A (1989) 87. https://doi.org/10.1007/BF02647496
  15. Z. Qu and K. H. Kuo : Metall. Trans., 12A (1981) 1333.
  16. P. Lukas and M. Klesnil : Mater. Sci. Eng., 11 (1973) 345.
  17. C. E. Feltner and C. Laird : Acta Metall., 15 (1967) 1633. https://doi.org/10.1016/0001-6160(67)90138-1