DOI QR코드

DOI QR Code

Untold story of human cervical cancers: HPV-negative cervical cancer

  • Lee, Jae-Eun (Department of Biomedical Science, University of Sheffield) ;
  • Chung, Yein (St. Benedict Catholic Secondary School) ;
  • Rhee, Siyeon (Stanford Cardiovascular Institute, Stanford University School of Medicine) ;
  • Kim, Tae-Hyung (Department of Pathology, University of New Mexico School of Medicine)
  • Received : 2022.03.01
  • Accepted : 2022.06.14
  • Published : 2022.09.30

Abstract

Cervical cancer is the fourth most common malignancy in women worldwide. Although infection from human papillomavirus (HPV) has been the leading cause of cervical cancer, HPV-negative cervical cancer accounts for approximately 3-8% of all cases. Previous research studies on cervical cancer have focused on HPV-positive cervical cancer due to its prevalence, resulting in HPV-negative cervical cancer receiving considerably less attention. As a result, HPV-negative cervical cancer is poorly understood. Its etiology remains elusive mainly due to limitations in research methodology such as lack of defined markers and model systems. Moreover, false HPV negativity can arise from inaccurate diagnostic methods, which also hinders the progress of research on HPV-negative cervical cancer. Since HPV-negative cervical cancer is associated with worse clinical features, greater attention is required to understand HPV-negative carcinoma. In this review, we provide a summary of knowledge gaps and current limitations of HPV-negative cervical cancer research based on current clinical statistics. We also discuss future directions for understanding the pathogenesis of HPV-independent cervical cancer.

Keywords

Acknowledgement

This work was supported by grants from NIH grants P20GM121176 from NIGMS (mentored PI in AIM CoBRE) and P30CA118100 from NCI (UNM Comprehensive Cancer Center Support Grant), METAvivor, and Department of Pathology, University of New Mexico (start-up funds) to T-H.K.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209-249 https://doi.org/10.3322/caac.21660
  2. Durst M, Gissmann L, Ikenberg H and zur Hausen H (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 80, 3812-3815 https://doi.org/10.1073/pnas.80.12.3812
  3. Li N, Franceschi S, Howell-Jones R, Snijders PJ and Clifford GM (2011) Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer 128, 927-935 https://doi.org/10.1002/ijc.25396
  4. Xing B, Guo J, Sheng Y, Wu G and Zhao Y (2020) Human papillomavirus-negative cervical cancer: a comprehensive review. Front Oncol 10, 606335
  5. Petry KU, Liebrich C, Luyten A, Zander M and Iftner T (2017) Surgical staging identified false HPV-negative cases in a large series of invasive cervical cancers. Papillomavirus Res 4, 85-89 https://doi.org/10.1016/j.pvr.2017.10.003
  6. Castle PE (2015) Comparison of cervical cancer screening results among 256,648 women in multiple clinical practices. Cancer Cytopathol 123, 566
  7. Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S et al (2017) Integrated genomic and molecular characterization of cervical cancer. Nature 543, 378-384 https://doi.org/10.1038/nature21386
  8. Baay MF, Tjalma WA, Weyler J et al (2001) Prevalence of human papillomavirus in elderly women with cervical cancer. Gynecol Obstet Invest 52, 248-251 https://doi.org/10.1159/000052984
  9. Nicolas I, Marimon L, Barnadas E et al (2019) HPV-negative tumors of the uterine cervix. Mod Pathol 32, 1189-1196 https://doi.org/10.1038/s41379-019-0249-1
  10. Li P, Tan Y, Zhu LX et al (2017) Prognostic value of HPV DNA status in cervical cancer before treatment: a systematic review and meta-analysis. Oncotarget 8, 66352-66359 https://doi.org/10.18632/oncotarget.18558
  11. Zampronha Rde A, Freitas-Junior R, Murta EF et al (2013) Human papillomavirus types 16 and 18 and the prognosis of patients with stage I cervical cancer. Clinics (Sao Paulo) 68, 809-814 https://doi.org/10.6061/clinics/2013(06)14
  12. Tommasino M, Accardi R, Caldeira S et al (2003) The role of TP53 in cervical carcinogenesis. Hum Mutat 21, 307-312 https://doi.org/10.1002/humu.10178
  13. Tjalma WA, Trinh XB, Rosenlund M et al (2015) A cross-sectional, multicentre, epidemiological study on human papillomavirus (HPV) type distribution in adult women diagnosed with invasive cervical cancer in Belgium. Facts Views Vis Obgyn 7, 101-108
  14. Romero-Pastrana F (2012) Detection and typing of human papilloma virus by multiplex PCR with type-specific primers. ISRN Microbiol 2012, 186915
  15. Rodriguez-Carunchio L, Soveral I, Steenbergen RD et al (2015) HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis. BJOG 122, 119-127 https://doi.org/10.1111/1471-0528.13071
  16. Iftner T, Germ L, Swoyer R et al (2009) Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays. J Clin Microbiol 47, 2106-2113 https://doi.org/10.1128/JCM.01907-08
  17. Jarrom D, Elston L, Washington J et al (2022) Effectiveness of tests to detect the presence of SARS-CoV-2 virus, and antibodies to SARS-CoV-2, to inform COVID-19 diagnosis: a rapid systematic review. BMJ Evid Based Med 27, 33-45 https://doi.org/10.1136/bmjebm-2020-111511
  18. Syrjanen K, Mantyjarvi R, Vayrynen M et al (1987) Human papillomavirus (HPV) infections involved in the neoplastic process of the uterine cervix as established by prospective follow-up of 513 women for two years. Eur J Gynaecol Oncol 8, 5-16
  19. Pratili MA, Le Doussal V, Harvey P et al (1986) [Human papillomaviruses in the epithelial cells of the cervix uteri: frequency of types 16 and 18. Preliminary results of a clinical, cytologic and viral study]. J Gynecol Obstet Biol Reprod (Paris) 15, 45-50
  20. Weisbrod CR, Chavez JD, Eng JK, Yang L, Zheng C and Bruce JE (2013) In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. J Proteome Res 12, 1569-1579 https://doi.org/10.1021/pr3011638
  21. Woodman CB, Collins SI and Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7, 11-22 https://doi.org/10.1038/nrc2050
  22. Barreto CL, Martins DB, de Lima Filho JL and Magalhaes V (2013) Detection of human papillomavirus in biopsies of patients with cervical cancer, and its association with prognosis. Arch Gynecol Obstet 288, 643-648 https://doi.org/10.1007/s00404-013-2803-2
  23. Higgins GD, Davy M, Roder D, Uzelin DM, Phillips GE and Burrell CJ (1991) Increased age and mortality associated with cervical carcinomas negative for human papillomavirus RNA. Lancet 338, 910-913 https://doi.org/10.1016/0140-6736(91)91773-N
  24. Riou G, Favre M, Jeannel D, Bourhis J, Le Doussal V and Orth G (1990) Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. Lancet 335, 1171-1174 https://doi.org/10.1016/0140-6736(90)92693-C
  25. Stolnicu S, Barsan I, Hoang L et al (2018) International Endocervical Adenocarcinoma Criteria and Classification (IECC): a new pathogenetic classification for invasive adenocarcinomas of the endocervix. Am J Surg Pathol 42, 214-226 https://doi.org/10.1097/PAS.0000000000000986
  26. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P and Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157-2165 https://doi.org/10.1038/sj.onc.1210302
  27. Reed N, Balega J, Barwick T et al (2021) British Gynaecological Cancer Society (BGCS) cervical cancer guidelines: recommendations for practice. Eur J Obstet Gynecol Reprod Biol 256, 433-465 https://doi.org/10.1016/j.ejogrb.2020.08.020
  28. Marth C, Landoni F, Mahner S et al (2017) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28, iv72-iv83 https://doi.org/10.1093/annonc/mdx220
  29. Yeung AR, Pugh SL, Klopp AH et al (2020) Improvement in patient-reported outcomes with intensity-modulated radiotherapy (RT) compared with standard RT: a report from the NRG Oncology RTOG 1203 Study. J Clin Oncol 38, 1685-1692 https://doi.org/10.1200/JCO.19.02381
  30. Yetkin-Arik B, Kastelein AW, Klaassen I et al (2021) Angiogenesis in gynecological cancers and the options for antiangiogenesis therapy. Biochim Biophys Acta Rev Cancer 1875, 188446
  31. Barlesi F, Scherpereel A, Gorbunova V et al (2014) Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: updated survival analysis of the AVAPERL (MO22089) randomized phase III trial. Ann Oncol 25, 1044-1052 https://doi.org/10.1093/annonc/mdu098
  32. Chung HC, Ros W, Delord JP et al (2019) Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 37, 1470-1478 https://doi.org/10.1200/JCO.18.01265
  33. Mezache L, Paniccia B, Nyinawabera A and Nuovo GJ (2015) Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol 28, 1594-1602 https://doi.org/10.1038/modpathol.2015.108
  34. Wendel Naumann R and Leath CA 3rd (2020) Advances in immunotherapy for cervical cancer. Curr Opin Oncol 32, 481-487 https://doi.org/10.1097/CCO.0000000000000663
  35. Colombo N, Dubot C, Lorusso D et al (2021) Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med 385,1856-1867 https://doi.org/10.1056/NEJMoa2112435
  36. Da Silva DM, Enserro DM, Mayadev JS et al (2020) Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929). Clin Cancer Res 26, 5621-5630 https://doi.org/10.1158/1078-0432.CCR-20-0776
  37. Bonaventura P, Shekarian T, Alcazer V et al (2019) Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 10, 168
  38. Shimada M, Tokunaga H, Kigawa J and Yaegashi N (2020) Impact of histopathological risk factors on the treatment of stage IB-IIB uterine cervical cancer. Tohoku J Exp Med 252, 339-351 https://doi.org/10.1620/tjem.252.339
  39. Arezzo F, Cormio G, Loizzi V et al (2021) HPV-negative cervical cancer: a narrative review. Diagnostics (Basel) 11, 952
  40. Meijer CJ, Berkhof J, Castle PE et al (2009) Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer 124, 516-520 https://doi.org/10.1002/ijc.24010
  41. Poljak M, Cuzick J, Kocjan BJ, Iftner T, Dillner J and Arbyn M (2012) Nucleic acid tests for the detection of alpha human papillomaviruses. Vaccine 30 Suppl 5, F100-106 https://doi.org/10.1016/j.vaccine.2012.04.105
  42. Gheit T, Landi S, Gemignani F et al (2006) Development of a sensitive and specific assay combining multiplex PCR and DNA microarray primer extension to detect high-risk mucosal human papillomavirus types. J Clin Microbiol 44, 2025-2031 https://doi.org/10.1128/JCM.02305-05
  43. Prigge ES, Arbyn M, von Knebel Doeberitz M and Reuschenbach M (2017) Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: a systematic review and meta-analysis. Int J Cancer 140, 1186-1198 https://doi.org/10.1002/ijc.30516
  44. Klaes R, Friedrich T, Spitkovsky D et al (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92, 276-284 https://doi.org/10.1002/ijc.1174
  45. Jedpiyawongse A, Homcha-em P, Karalak A and Srivatanakul P (2008) Immunohistochemical overexpression of p16 protein associated with cervical cancer in Thailand. Asian Pac J Cancer Prev 9, 625-630
  46. Alos L, Moyano S, Nadal A et al (2009) Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer 115, 2701-2709 https://doi.org/10.1002/cncr.24309
  47. Larque AB, Hakim S, Ordi J et al (2014) High-risk human papillomavirus is transcriptionally active in a subset of sinonasal squamous cell carcinomas. Mod Pathol 27, 343-351 https://doi.org/10.1038/modpathol.2013.155
  48. Pirog EC (2015) Diagnosis of HPV-negative, gastric-type adenocarcinoma of the endocervix. Methods Mol Biol 1249, 213-219 https://doi.org/10.1007/978-1-4939-2013-6_16
  49. Sak K (2014) Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac J Cancer Prev 15, 8007-8019 https://doi.org/10.7314/APJCP.2014.15.19.8007
  50. Lohmussaar K, Boretto M and Clevers H (2020) Humanderived model systems in gynecological cancer research. Trends Cancer 6, 1031-1043 https://doi.org/10.1016/j.trecan.2020.07.007
  51. Arbeit JM (2003) Mouse models of cervical cancer. Comp Med 53, 256-258
  52. Sharma RK, Srivastava AK, Yolcu ES et al (2010) SA-4-1BBL as the immunomodulatory component of a HPV-16 E7 protein based vaccine shows robust therapeutic efficacy in a mouse cervical cancer model. Vaccine 28, 5794-5802 https://doi.org/10.1016/j.vaccine.2010.06.073
  53. Immel TA, Grutzke M, Spate AK, Groth U, Ohlschlager P and Huhn T (2012) Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy. Chem Commun (Camb) 48, 5790-5792 https://doi.org/10.1039/c2cc31624b
  54. Zhao X, Pang L, Qian Y et al (2013) An animal model of buccal mucosa cancer and cervical lymph node metastasis induced by U14 squamous cell carcinoma cells. Exp Ther Med 5, 1083-1088 https://doi.org/10.3892/etm.2013.938
  55. Pappa KI, Kontostathi G, Makridakis M et al (2017) High resolution proteomic analysis of the cervical cancer cell lines secretome documents deregulation of multiple proteases. Cancer Genomics Proteomics 14, 507-521
  56. Chaudary N, Jaluba K, Pintilie M and Hill RP (2015) Establishment of orthotopic primary cervix cancer xenografts. Methods Mol Biol 1249, 381-391 https://doi.org/10.1007/978-1-4939-2013-6_28
  57. Chen L, Luan S, Xia B et al (2018) Integrated analysis of HPV-mediated immune alterations in cervical cancer. Gynecol Oncol 149, 248-255 https://doi.org/10.1016/j.ygyno.2018.01.031
  58. Roman M, Baraibar I, Lopez I et al (2018) KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer 17, 33
  59. Pirog EC (2017) Cervical adenocarcinoma: diagnosis of human papillomavirus-positive and human papillomavirusnegative tumors. Arch Pathol Lab Med 141, 1653-1667 https://doi.org/10.5858/arpa.2016-0356-RA
  60. Lin M, Kim KR anb Ro J (2020) Gastric-type endocervical adenocarcinoma: review of clinicopathologic characteristics and recent advances. J Gynecol Res Obstet 6, 72-75
  61. Chumduri C, Gurumurthy RK, Berger H et al (2021) Opposing Wnt signals regulate cervical squamocolumnar homeostasis and emergence of metaplasia. Nat Cell Biol 23, 184-197 https://doi.org/10.1038/s41556-020-00619-0
  62. Lohmussaar K, Oka R, Espejo Valle-Inclan J et al (2021) Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 28, 1380-1396 e1386
  63. Maru Y, Tanaka N, Ebisawa K et al (2019) Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma. Cancer Sci 110, 2992-3005 https://doi.org/10.1111/cas.14119
  64. Li C, Zhou T, Chen J et al (2022) The role of Exosomal miRNAs in cancer. J Transl Med 20, 6
  65. Bhat A, Yadav J, Thakur K et al (2022) Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer 22, 164
  66. Jimenez-Avalos JA, Fernandez-Macias JC and Gonzalez-Palomo AK (2021) Circulating exosomal MicroRNAs: New non-invasive biomarkers of non-communicable disease. Mol Biol Rep 48, 961-967 https://doi.org/10.1007/s11033-020-06050-w
  67. Bhat A, Yadav J, Thakur K et al (2021) Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog-GLI signaling components. Cancer Cell Int 21, 319
  68. Zhang Y, Liu Y, Liu H and Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9, 19
  69. Wu XG, Zhou CF, Zhang YM et al (2019) Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22, 397-410 https://doi.org/10.1007/s10456-019-09665-1
  70. Zhang J, Liu SC, Luo XH et al (2016) Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 30, 1116-1121 https://doi.org/10.1002/jcla.21990
  71. Thery C, Zitvogel L and Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2, 569-579 https://doi.org/10.1038/nri855