DOI QR코드

DOI QR Code

효과분석 시뮬레이션을 이용한 미지 우주물체 광학 추적 시스템 설계 변수 조합 분석

Combination Analysis of Optical Tracking System Design Variables for Unknown Space Objects Using Effectiveness Analysis Simulation

  • 투고 : 2022.07.05
  • 심사 : 2022.08.01
  • 발행 : 2022.09.30

초록

본 논문은 미지 우주물체에 대한 광학 연속 관측을 위한 효과 척도를 정의하고, 통합 시뮬레이션 수행을 이용하여 망원경/마운트 제어 시스템 관점에서 효과 척도를 만족할 수 있는 설계 변수 조합 범위를 제시하였다. 표적의 위치 예측과 함께 프레임률, 영상처리 소요시간과 측정 오차, 표적 궤적특성 및 마운트 김발의 기동성능 등의 설계 변수를 고려하여 전체적인 시스템 수준에서의 시뮬레이션을 구현하고 추적 성능을 분석하였다. 분석 결과 광학 관측 시스템의 연속 추적 성능은 프레임률과 마운트 기동성능의 조합에 의존적임을 확인할 수 있었다. 광학 관측 시스템을 설계하거나 상용 제품을 구입하여 유사 시스템을 구성할 때, 본 연구와 같이 효과분석 시뮬레이션을 이용하면 설계 변수들 사이의 적절한 요소 조합을 찾을 수 있을 것이다.

This paper defines an effectiveness index for optical continuous observation of unknown space objects and presents a range of design variables combinations that can satisfy the effectiveness index from a telescope/mount control system perspective using integrated simulation. The overall system-level simulation was implemented and the tracking performance was analyzed by considering design variables such as target position prediction and frame rate, image processing time and measurement error, target trajectory characteristics, and maneuver performance of mount gimbal. As a result of the analysis, it was confirmed that the continuous tracking performance of the optical observation system is dependent on the combination of frame rate and mount maneuver performance. In a situation where an optical observation system is designed or a similar system is implemented using COTS, an appropriate combination of parameters between design variables can be found through effectiveness analysis simulation as in this study.

키워드

참고문헌

  1. E. J. Choi, Space debris, Galmaenamoo, Korea, 2021.
  2. C. Hyun, S. W. Lee, H. J. Lee, and J. M. Lee, "Streak Estimation Method for Obtaining Orbital Information of Unknown Space Objects," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 11, pp. 1448-1454, Nov. 2018. https://doi.org/10.6109/JKIICE.2018.22.11.1448
  3. T. S. Campbell, V. Reddy, J. Larson, R. Linares, and R. Furfaro, "Optical Tracking of Artificial Earth Satellites with COTS Sensors," in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui: HI, USA, 2018.
  4. L. G. Anderson, "Satellite tracking with telescope and software," M. S. theses, Naval Postgraduate School, Monterey: CA, USA, 2019.
  5. H. Yoon, K. Riesing, and K. Cahoy, "Satellite Tracking System using Amateur Telescope and Star Camera for Portable Optical Ground Station," in Proceeding of AIAA/USU Conference on Small Satellites, Logan: UT, USA, 2016.
  6. S. Aydin, C. Guzenge, A. Kaya, O. Kayhan, E. C. Kovan, M. K. Yurtcu, and B. Akbulut, "Tracking of low earth orbit satellites by optical systems," in Proceedings of the 2015 7th International Conference on Recent Advances in Space Technologies(RAST), Istanbul, Turkey, pp. 175-180, 2015.
  7. C. Hyun, S. W. Lee, H. J. Lee, and S. W. Park, "Tracking Analysis of Unknown Space Objects in Optical Space Observation Systems," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 12, pp. 1826-1834, Dec. 2021. https://doi.org/10.6109/JKIICE.2021.25.12.1826
  8. W. Yang, Y. Zhao, M. Liu, and D. Liu, "Method of space object detection by wide field of view telescope based on its following error," Optics Express, vol. 29, no. 22, pp. 35348-35365, Oct. 2021. https://doi.org/10.1364/OE.440842
  9. J. H. Jo, J. H. Park, S. K. Cho, H. S. Yim, J. Choi, and M. Park, "Requirement analysis of a low budget dedicated monitoring telescope to support the Geosynchronous Earth Orbit region optical surveillance," Journal of Satellite, Information and Communications, vol. 10, no. 4, pp. 128-135, Dec. 2015.
  10. T. Hasenohr, "Initial Detection and Tracking of Objects in Low Earth Orbit," M. S. thesis, University of Stuttgart, Germany, 2016.