Acknowledgement
This study is supported by Chinese National Natural Science Foundation (52178500, 51678452), which are gratefully acknowledged.
References
- Baker, C.J. (2007), "The debris flight equations", J. Wind Eng. Industrial Aerodynam., 95(5), 329-353. https://doi.org/10.1016/j.jweia.2006.08.001.
- Dupleich, P. (1949), "Rotation in free fall of rectangular wings of elongated shape", No. NACA-TM-1201; NACA, Washington, D.C.., USA.
- Grayson, M., Pang, W.C. and Schiff, S. (2012), "Threedimensional probabilistic wind-borne debris trajectory model for building envelope impact risk assessment", J. Wind Eng. Industrial Aerodynam., 102(3), 22-35. https://doi.org/10.1016/j.jweia.2012.01.002.
- Greenwell, D.I. and Garcia, M.T. (2014), "Autorotation dynamics of a low aspect-ratio rectangular prism", J. Fluids Struct., 49, 640-653. https://doi.org/10.1016/j.jfluidstructs.2014.06.004.
- Greenwell, D.I. (2014), "Geometry effects on autorotation of rectangular prisms", J. Wind Eng. Industrial Aerodynam., 132, 92-100. https://doi.org/10.1016/j.jweia.2014.06.014.
- Holmes, J.D., Letchford, C.W. and Lin, N. (2006), "Investigations of plate-type windborne debris-Part II: Computed trajectories", J. Wind Eng. Industrial Aerodynam., 94(1), 21-39. https://doi.org/10.1016/j.jweia.2005.10.002.
- Huang, P., Wang, F., Fu, A. and Gu, M. (2016), "Numerical simulation of 3-d probabilistic trajectory of plate-type windborne debris", Wind Struct., 22(1), 17-41. https://doi.org/10.12989/was.2016.22.1.017.
- Huang, P., Huatan, L. and Ming G. (2020), "Wind tunnel investigation of autorotation of plate: the effects of geometry, Reynolds number and rotation direction", J. Wind Eng. Industrial Aerodynam., 196, 104012. https://doi.org/10.1016/j.jweia.2019.104012.
- Iversen, J.D. (1979), "Autorotating flat-plate wings: The effect of the moment of inertia, geometry and Reynolds number", J. Fluid Mech., 92(02), 327-348. https://doi.org/10.1017/S0022112079000641.
- Kakimpa, B., Hargreaves, D.M. and Owen, J.S. (2012), "An investigation of plate-type windborne debris flight using coupled CFD-RBD models. Part I: Model development and validation", J. Wind Eng. Industrial Aerodynam., 111(12), 95-103. https://doi.org/10.1016/j.jweia.2012.07.008.
- Kakimpa, B., Hargreaves, D.M. and Owen, J.S. (2012), "An investigation of plate-type windborne debris flight using coupled CFD-RBD models. Part II: Free and constrained flight", J. Wind Eng. Industrial Aerodynam., 111(12), 104-116. https://doi.org/10.1016/j.jweia.2012.07.011.
- Kareem, A. (1986), "Performance of cladding in hurricane Alicia", J. Struct. Eng., 112(12), 2679-2693. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2679).
- Kordi, B. and Kopp, G.A. (2009), "Evaluation of quasi-steady theory applied to windborne flat plates in uniform flow", J. Eng. Mech., 135(7), 657-668. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000008.
- Kordi, B. and Kopp, G.A. (2011), "Effects of initial conditions on the flight of windborne plate debris", J. Wind Eng. Industrial Aerodynam., 99(5), 601-614. https://doi.org/10.1016/j.jweia.2011.02.009.
- Kordi, B., Traczuk, G. and Kopp, G.A. (2010), "Effects of wind direction on the flight trajectories of roof sheathing panels under high winds", Wind Struct., 13(2), 145-167. https://doi.org/10.12989/was.2010.13.2.145.
- Lee, B.E. (1988), "Engineering design for extreme winds in Hong Kong", Hong Kong Eng., 16(4), 15-23.
- Lin, N., Letchford, C. and Holmes, J. (2006), "Investigation of plate-type windborne debris. Part i. Experiments in wind tunnel and full scale", J. Wind Eng. Industrial Aerodynam., 94(2), 51-76. https://doi.org/10.1016/j.jweia.2005.12.005.
- Minor, J.E. (1994), "Windborne debris and the building envelope", J. Wind Eng. Industrial Aerodynam., 53(1-2), 207-227. https://doi.org/10.1016/0167-6105(94)90027-2.
- National Association of Home Builders (NAHB) Research Center (2002), "Wind-borne Debris Impact Resistance of Residential Glazing", Cooperative Agreement H-21172CA; U.S. Department of Housing and Urban Development, Office of Policy Development and Research, Washington, D.C., USA.
- Richards, P.J., Williams, N., Laing, B., Mccarty, M. and Pond, M. (2008), "Numerical calculation of the three-dimensional motion of wind-borne debris", J. Wind Eng. Industrial Aerodynam., 96(10-11), 2188-2202. https://doi.org/10.1016/j.jweia.2008.02.060.
- Tachikawa, M. (1983), "Trajectories of flat plates in uniform flow with application to wind-generated missiles", J. Wind Eng. Industrial Aerodynam., 14(1-3), 443-453. https://doi.org/10.1016/0167-6105(83)90045-4.
- Tachikawa, M. (1981), "Trajectories and velocities of typhoongenerated missiles, Part I, Aerodynamic characteristics of flat plates and equations of motion", Trans. Architect. Inst. Japan, 314, 1-10. https://doi.org/10.3130/aijsaxx.302.0_1
- Wills, J.A.B., Lee, B.E. and Wyatt, T.A. (2002), "A model of wind-borne debris damage", J. Wind Eng. Industrial Aerodynam., 90(4), 555-565. https://doi.org/10.1016/S0167-6105(01)00197-0.
- Visscher, B.T. and Kopp, G.A. (2007), "Trajectories of roof sheathing panels under high winds", J. Wind Eng. Industrial Aerodynam., 95(8), 697-713. https://doi.org/10.1016/j.jweia.2007.01.003.