DOI QR코드

DOI QR Code

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys

  • Rahman, Saba (Department of Civil Engineering, Indian Institute of Technology (IIT)) ;
  • Jain, Arvind K. (Department of Civil Engineering, Indian Institute of Technology (IIT)) ;
  • Bharti, S.D. (Department of Civil Engineering, Malaviya National Institute of Technology (MNIT)) ;
  • Datta, T.K. (Department of Civil Engineering, Malaviya National Institute of Technology (MNIT))
  • Received : 2022.01.08
  • Accepted : 2022.06.27
  • Published : 2022.07.25

Abstract

A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.

Keywords

References

  1. Balasubramanian, S., Haan, F.L., Szewczyk, A.A. and Skop, R.A. (1998), "On the existence of a critical shear parameter for cellular vortex shedding from cylinders in nonuniform flow", J. Fluids Struct., 12(4), 3-15. https://doi.org/10.1006/jfls.1997.0122.
  2. Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", Proceedings of the Royal Society: Mathematical, Physical and Engineering Sciences, London, October.
  3. Brankovic, M. and Bearman, P.W. (2006), "Measurements of transverse forces on circular cylinders undergoing vortexinduced vibration", J. Fluids Struct., 22(14), 829-836. https://doi.org/10.1016/j.jfluidstructs.2006.04.022.
  4. Chen, J. and Li, Q.S. (2019), "Nonlinear dynamics of a fluidstructure coupling model for vortex-induced vibration", Int. J. Struct. Stab. Dyn., 19(12), 1-20. https://doi.org/10.1142/S0219455419500718.
  5. de Langre, E. (2006), "Frequency lock-in is caused by coupledmode flutter", J. Fluids Struct., 22(6), 783-791. https://doi.org/10.1016/j.jfluidstructs.2006.04.008.
  6. Ellingen, O. (2021), "Vortex-induced vibrations on industrial chimneys", Ph.D. Dissertation, Institute of Polytechnique, Paris. https://tel.archives-ouvertes.fr/tel-03483512v2.
  7. EN 1991-1-4 (2005), Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions, European Committee for Standardization; Brussels, Belgium.
  8. Farshidianfar, A. and Dolatabadi, N. (2013), "Modified higherorder wake oscillator model for vortex-induced vibration of circular cylinders", Acta Mech., 224(7), 1441-1456. https://doi.org/10.1007/s00707-013-0819-0.
  9. Farshidianfar, A. and Zanganeh, H. (2010), "A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio", J. Fluids Struct., 26(3), 430-441. https://doi.org/10.1016/j.jfluidstructs.2009.11.005.
  10. Gabbai, R.D. and Benaroya, H. (2005), "An overview of modeling and experiments of vortex-induced vibration of circular cylinders", J. Sound Vib., 282, 575-616. https://doi.org/10.1016/j.jsv.2004.04.017.
  11. Gao, X.F., Xie, W. de, Xu, W.H., Bai, Y.C. and Zhu, H.T. (2001), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluids Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.
  12. Gao, X.F., Xie, W. de, Xu, W.H., Bai, Y.C. and Zhu, H.T. (2018), "A novel wake oscillator model for vortex-induced vibrations prediction of a cylinder considering the influence of reynolds number", China Ocean Eng., 32(3-5), 132-143. https://doi.org/10.1007/s13344-018-0015.
  13. Govardhan, R., and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency responseof a freely vibrating cylinder", J. Fluids Mech., 420, 85-130. https://doi.org/10.1017/S0022112000001233.
  14. Griffin, M.O. (1980), "Vortex-excited cross-flow vibrations of a single cylindrical tube", J. Press. Vessel Technol., 102(25), 158-166. https://doi.org/10.1115/1.3263315.
  15. Hartlen, R.T. and Currie, I.G. (1970), "Lift-oscillator model of vortex-induced vibration", J. Eng. Mech. Div., 96(4), 577-591. https://doi.org/10.1061/JMCEA3.0001276.
  16. Iwan, W.D. and Jones, N.P. (1987), "On the vortex-induced oscillation of long structural elements", J. Energy Resour. Technol. Trans. ASME., 109(4), 161-167. https://doi.org/10.1115/1.3231342.
  17. Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions", J. Fluids Struct., 13, 813-851. https://doi.org/10.1006/jfls.1999.0236.
  18. King, R. (1977), "Vortex excited oscillations of yawed circular cylinders", J. Fluids Eng. Trans. ASME, 99(3), 495-501. https://doi.org/10.1115/1.3448825.
  19. Krenk, S. and Nielsen, S.R.K. (1999), "Energy balanced double oscillator model for vortex-induced vibrations", J. Eng. Mech., 125(3), 263-271. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:3(263).
  20. Kurushina, V., Pavlovskaia, E., Postnikov, A. and Wiercigroch, M. (2009), "Calibration and comparison of VIV wake oscillator models for low mass ratio structures", Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, United Kingdom.
  21. Lupi, F., Niemann, H.J. and Hoffer, R. (2018), "Aerodynamic damping model in vortex-induced vibrations for wind engineering applications", J. Wind Eng. Ind. Aerodyn., 174(5), 281-295. https://doi.org/10.1016/j.jweia.2018.01.006.
  22. Nayfeh, A.H. (2011), Introduction to Perturbation Techniques, John Wiley and Sons, Hoboken, NJ, USA.
  23. Ogink, R.H.M. and Metrikine, A.V. (2010), "A wake oscillator with frequency dependent coupling for the modeling of vortexinduced vibration", J. Sound Vib., 329(26), 5452-5473. https://doi.org/10.1016/j.jsv.2010.07.008.
  24. Qu, Y. and Metrikine, A.V. (2020), "A single van der pol wake oscillator model for coupled cross-flow and in-line vortexinduced vibrations", Ocean Eng., 196(10), 106732. https://doi.org/10.1016/j.oceaneng.2019.106732.
  25. Rahman, S., Jain, A.K., Bharti, S.D. and Datta, T.K. (2020), "Journal of Wind Engineering and Industrial Aerodynamics Comparison of international wind codes for across wind response of concrete chimneys", J. Wind Eng. Ind. Aerodyn., 207(3), 104401. https://doi.org/10.1016/j.jweia.2020.104401.
  26. Ruscheweyh, H. and Galemann, T. (1996), "Full-scale measurements of wind-induced oscillations of chimneys", J. Wind Eng. Ind. Aerodyn., 65(1), 55-62. https://doi.org/10.1016/S0167-6105(97)00022-6.
  27. Sarpkaya, T. (1978), "Fluid forces on oscillating cylinders", J. Waterw. Port, Coast. Ocean Div., 104(3), 275-290. https://doi.org/10.1061/JWPCDX.0000101
  28. Sarpkaya, T. (1979), "Vortex-induced oscillations", J. Appl. Mech., 46(2), 241-258. https://doi.org/10.1115/1.3424537
  29. Sarpkaya, T. (1993), "Coherent structures in oscillatory boundary layers", J. Fluid Mech., 253(4), 105-140. https://doi.org/10.1017/S0022112093001739.
  30. Sarpkaya, T. (1995), "Turbulent vortex breakdown", Phys. Fluids., 7(10), 2301-2303. https://doi.org/10.1063/1.868742.
  31. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluids Struct., 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.
  32. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, John Wiley and Sons, Hoboken, NJ, USA.
  33. Skop, R.A. and Griffin, O.M. (1973), "A model for the vortexexcited resonant response of bluff cylinders", J. Sound Vib., 27(2), 225-233. https://doi.org/10.1016/0022-460X(73)90063-1.
  34. Skop, R.A. and Griffin, O.M. (1975), "On a theory for the vortexexcited oscillations of flexible cylindrical structures", J. Sound Vib., 41(12), 263-274. https://doi.org/10.1016/S0022-460X(75)80173-8
  35. Skop, R.A. and Balasubramanian, S. (1997), "A new twist on an old model for vortex-excited vibrations", J. Fluids Struct., 11(4), 395-412. https://doi.org/10.1006/jfls.1997.0085.
  36. Skop, R.A. and Luo, G. (2001), "An inverse-direct method for predicting the vortex-induced vibrations of cylinders in uniform and non-uniform flow", J. Fluids Struct., 15(23), 575-585. https://doi.org/10.1006/j.
  37. Srinil, N. and Zanganeh, H. (2012), "Modelling of coupled crossflow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators", Ocean Eng., 53(7), 83-97. https://doi.org/10.1016/j.oceaneng.2012.06.025.
  38. Vandiver, J.K. (2012), "Damping Parameters for flow-induced vibration", J. Fluids Struct., 35(8), 105-119. https://doi.org/10.1016/j.jfluidstructs.2012.07.002.
  39. Vigneshvar, V., Vishwanth, S.R., Venkateshwaran, S. and Balaram, B. (2019), "A comparative study of wake oscillator models for flow induced vibrations", AIP Conference Proceedings, Thiruvananthapuram, August.
  40. Violette, R., de Langre, E. and Szydlowski, J. (2010), "A linear stability approach to vortex-induced vibrations and waves", J. Fluids Struct., 26(3), 442-466. https://doi.org/10.1016/j.jfluidstructs.2010.01.002.
  41. Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2(2), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.
  42. Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128.
  43. Xu, W.H., Wu, Y.X., Zeng, X.H., Zhong, X.F. and Yu, J.X. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodyn., 22(17), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.
  44. Zdravkovich, M.M. (1996), "Different modes of vortex shedding: An overview", J. Fluids Struct., 32(2), 427-437. https://doi.org/10.1006/jfls.1996.0029.