과제정보
The authors sincerely acknowledge the financial support received from LIGO India to carry out the following study.
참고문헌
- Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74-76, 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.
- Shiraishi, N., Matsumoto, M., Shirato, H. and Ishizaki, H. (1988), "On aerodynamic stability effects for bluff rectangular cylinders by their corner-cut", Journal of Wind Engineering and Industrial Aerodynamics, 28, 371-380. https://doi.org/10.1016/0167-6105(88)90133-X.
- Rehacek, D., Khel, T., Kucera, J., Vopravil, J. and Petera, M. (2017), "Effect of windbreaks on wind speed reductionand soil protection against wind erosion", Soil Water Res., 12, 128-135. https://doi.org/10.1016/j.jaridenv.2004.10.005.
- Cornelis, W.M. and Gabriels, D. (2005), "Optimal windbreak design for wind-erosion control", J. Arid Environ, 61, 315-332. https://doi.org/10.1016/j.jaridenv.2004.10.005.
- Tsai, B. and Shaiu, B. (2011), "Experimental study on the flow characteristics for wind over a two-dimensional upwind slope escarpment", J. Marine Sci. Technol., 19(5), 1. http://dx.doi.org/10.51400/2709-6998.2159.
- Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorna, S. and Chanb, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Ind. Aerod., 97, 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.
- Kwok, K.C.S., Wilhelm, P.A. and Wilkie, B.G. (1988), "Effect of edge configuration on wind-induced response of tall buildings", Eng. Struct., 10, 135-140. https://doi.org/10.1016/0141-0296(88)90039-9.
- Young-Moon, K., Ki-Pyo, Y. and Nag-Ho, K. (2008), "Acrosswind responses of an aeroelastic tapered tall building", J. Wind Eng. Ind. Aerod., 96(8-9), 1307-1319. http://dx.doi.org/10.1016/j.jweia.2008.02.038.
- Haque, M.N. (2020), "Effectiveness of corner modification to optimize aerodynamic responses of square cylinder", J. Phys.: Conference Series, 1519, 12-18. https://doi.org/10.1088/1742-6596/1519/1/012018.
- Aswathy, M.S., Amrita, K.K., Hariprasad, C.M. and Kumar, R.A. (2015), "Near-wake flow structures of a corner-chamfered square cylinder at higher harmonic excitations", In Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers. https://doi.org/10.1115/AJKFluids2015-12675.
- Yi, L., Chao, L., Qiu-Sheng, L., Qian, S., Xuan, H. and Yong-Gui, L. (2020), "Aerodynamic performance of CAARC standard tall building model by various corner chamfers", J. Wind Eng. Ind. Aerod., 202, 104-197. https://doi.org/10.1016/j.jweia.2020.104197.
- Delany, N.K. and Sorensen, N.E. (1953), Low-Speed Drag of Cylinders of Various Shapes. https://digital.library.unt.edu/ark:/67531/metadc56716/.
- Lee, B.E. (1975), "The effect of turbulence on the surface pressure field of a square prism", J. Fluid Mech., 69, 263-282. https://doi.org/10.1017/S0022112075001437.
- Lee, B.E. (1975), "Some effects of turbulence scale on the mean forces on a bluff body", J. Wind Eng. Ind. Aerod., 1, 361-370. https://doi.org/10.1016/0167-6105(75)90030-6.
- Okamoto, S. and Uemura, N. (1991), "Effect of rounding sidecorners on aerodynamic forces and turbulent wake of a cube placed on a ground plane", Experimen. Fluids, 11, 58-64. https://doi.org/10.1007/BF00198432.
- Tamura, T. and Miyagi, T. (1999), "The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 83, 135-145. https://doi.org/10.1016/S0167-6105(99)00067-7.
- Hu, J.C., Zhou, Y. and Dalton, C. (2006), "Effects of the corner radius on the near wake of a square prism", Experimen. Fluids, 40, 106-118. https://doi.org/10.1007/s00348-005-0052-2
- Jaiman, R.K., Sen, S. and Gurugubelli, P.S. (2015), "A fully implicit combined field scheme for freely vibrating square cylinders with sharp and rounded corners", Comput. Fluids, 112. https://doi.org/10.1016/j.compfluid.2015.02.002.
- Carassale, L., Freda, A. and Marre-Brunenghi, M. (2014), "Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners", J. Fluids Struct., 112, 195-204. https://doi.org/10.1016/j.jfluidstructs.2013.10.010.
- Wang, X. and Gu, M. (2015), "Experimental investigation of Reynolds number effects on 2D rectangular prisms with various side ratios and rounded corners", Wind Struct., 21(2), 183-202. https://doi.org/10.12989/was.2015.21.2.183.
- Shi, L., Yang, G. and Yao, S. (2018), "Large eddy simulation of flow past a square cylinder with rounded leading corners: A comparison of 2D and 3D approaches", J. Mech. Sci. Technol., 32, 2671-2680. http://dx.doi.org/10.1007/s12206-018-0524-y.
- Zhang, W. and Samtaney, R. (2016), "Low-Re flow past an isolated cylinder with rounded corners", Comput. Fluids, 136. https://doi.org/10.1016/j.compfluid.2016.06.025.
- Miran S. and Sohn C.H. (2015), "Numerical study of the rounded corners effect on flow past a square cylinder", Int. J. Numer. Meth. Heat Fluid Flow, 25, 686-702. http://dx.doi.org/10.1108/HFF-12-2013-0339.
- Cao, Y. and Tamura, T. (2017), "Supercritical flows past a square cylinder with rounded corners", Phys. Fluids, 29(8), 85-110. https://doi.org/10.1063/1.4998739.
- Cao, Y. and Tamura, T. (2018a), "Aerodynamic characteristics of a rounded-corner square cylinder in shear flow at subcritical and supercritical Reynolds numbers", J. Fluids Struct., 82, 473-491. https://doi.org/10.1016/j.jfluidstructs.2018.07.012.
- Cao, Y. and Tamura, T. (2018b), "Shear effects on flows past a square cylinder with rounded corners at Re=2.2 × 104", J. Wind Eng. Ind. Aerod., 174, 119-132. https://doi.org/10.1016/j.jweia.2017.12.025.
- Dai, S.S., Younis, B.A. and Zhang H.Y. (2017), "Prediction of turbulent flow around a square cylinder with rounded corners", J. Offshore Mech. Arctic Eng., 139. https://doi.org/10.1115/1.4035957.
- Chiarini, A. and Quadrio, M. (2022), "The importance of corner sharpness in the BARC test case: A numerical study", Wind and Structures, 34(1), 43-58. https://doi.org/10.12989/was.2022.34.1.043.
- Park, D. and Yang, K. (2016), "Flow instabilities in the wake of a rounded square cylinder", J. Fluid Mech., 793, 915-932. https://doi.org/10.1017/jfm.2016.156.
- Ono, Y. and Tamura, T. (2008), LES of Flow Around a Circular Cylinder in the Critical Reynolds Number Region.
- Rodriguez, I, Lehmkuhl, O., Chiva, J., Borrell, R. and Oliva, A. (2015), "On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding", Int. J. Heat Fluid Flow, 55, 91-103. https://doi.org/10.1016/j.ijheatfluidflow.2015.05.009.
- Yeon, S.M., Yang, J. and Stern, F. (2016), "Large-eddy simulation of the flow past a circular cylinder at sub- to super-critical Reynolds numbers", Appl. Ocean Res., 59, 663-675. https://doi.org/10.1016/j.apor.2015.11.013.
- Chen, J. (2018), Effect of Aspect Ratio on the Flow Structures Behind a Square Cylinder, University of Winsdor, Winsdor. https://scholar.uwindsor.ca/etd/7507.
- Spalart, P. and Rumsey, C. (2007), "Effective inflow conditions for turbulence models in aerodynamic calculations", Aiaa J., 45, 2544-2553. https://doi.org/10.2514/1.29373.
- Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M. K.H. and Travin, A. (2006), "A new version of detached-eddy simulation, resistant to ambiguous grid densities", Theoretic. Comput. Fluid Dyn., 20, 181. https://doi.org/10.1007/s00162-006-0015-0.
- Choi, C.K. and Kwon, D.K. (1999), "Aerodynamic stability for square cylinder with various corner cuts", Wind Struct., 2(3), 173-187. http://dx.doi.org/10.12989/was.1999.2.3.173.
- Menter, F.R. and Kuntz, M. (2004), "Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles", Aerod. Heavy Vehicles: Trucks, Buses, and Trains, 339-352. https://doi.org/10.1007/978-3-540-44419-0_30.
- Menter, F.R. (2004), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149.
- Shur, M.L., Spalart, P.R., Strelets, M.Kh. and Travin, A. (2008), "A hybrid RANS-LES approach with delayed-DES and wallmodelled LES capabilities", Int. J. Heat and Fluid Flow, 29, 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001.
- Sohankar, A. (2006), "Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation", Comput. Fluids, 35, 1154-1168. https://doi.org/10.1016/j.compfluid.2005.05.007.
- Taylor, G.I. (1938), "The spectrum of turbulence", Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164(919), 476-490. https://doi.org/10.1098/rspa.1938.0032.
- Hayase, T., Humphrey, J.A.C. and Greif, R. (2008), "A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures", J. Comput. Phys., 98, 108-118. https://doi.org/10.1016/0021-9991(92)90177-Z.
- Schewe, G. (1983), "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers", J. Fluid Mech., 133, 265-285. https://doi.org/10.1017/S0022112083001913.
- Choi, C.K. and Kwon, D.K. (2003), "Effects of corner cuts and angles of attack on the Strouhal number of rectangular cylinders", Wind Struct., 6(2), 127-140. http://dx.doi.org/10.12989/was.2003.6.2.127.
- Nishimura, H. and Taniike, Y. (2000), "Fluctuating pressures on a two-dimensional square prism", J. Struct. Construct. Eng. Transact. AIJ, 65, 37-43. http://dx.doi.org/10.3130/aijs.65.37_3.
- Lander, D.C., Letchford, C.W., Amitay, M. and Kopp, G.A. (2016), "Influence of the bluff body shear layers on the wake of a square prism in a turbulent flow", Phys. Rev. Fluids, 4(1), 044406. https://doi.org/10.1103/PhysRevFluids.1.044406.
- Maryami, R., Showkat Ali, S., Azarpeyvand, M., Dehghan, A.A. and Afshari, A. (2019), "Turbulent flow interaction with a circular cylinder", 25th AIAA/CEAS Aeroacoustics Conference. https://doi.org/10.1063/1.5119967.
- Li, C., Chen, Z., Tse, K.T., Weerasuriya, A., Zhang, X., Fu, Y. and Lin, X (2022), "The linear-time-invariance notion of the koopman analysis-part 1: The architecture, practical rendering on the prism wake, and fluid-structure association", https://doi.org/10.48550/arXiv.2112.02985.
- Bearman, P. and Obasaju, E. (1982), "An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders", J. Fluid Mech., 119, 297-321. https://doi.org/10.1017/S0022112082001360.
- Bai, H. and Alam, M.M. (2018), "Dependence of square cylinder wake on Reynolds number", Phys. Fluids, 30, 015102. https://doi.org/10.1063/1.4996945.
- McLean, I. and Gartshore, I. (1992), "Spanwise correlations of pressure on a rigid square section cylinder", J. Wind Eng. Ind. Aerod., 41(1-3), 797-808. https://doi.org/10.1016/0167-6105(92)90498-Y.
- Gurugubelli, P.S. and Jaiman, R.K. (2019), "Large amplitude flapping of an inverted elastic foil in uniform flow with spanwise periodicity", J. Fluids Struct., 90, 139-163. https://doi.org/10.1016/j.jfluidstructs.2019.05.009.
- Saathoff, P. and Melbourne, W.H. (1999), "Effects of freestream turbulence on streamwise pressure measured on a squaresection cylinder", J. Wind Eng. Ind. Aerod., 79(1-2), 61-78. https://doi.org/10.1016/S0167-6105(98)00112-3.