References
- Achenbach, E. (1971), "Influence of surface roughness on the cross-flow around a circular cylinder", J. Fluid Mech., 46(2), 321-335. https://doi.org/10.1017/s0022112071000569.
- Achenbach, E. (1972), "Experiments on the flow past spheres at very high Reynolds numbers", J. Fluid Mech., 54(3), 565-575. https://doi.org/10.1017/S0022112072000874.
- Achenbach, E. (1974), "Vortex shedding from spheres", J. Fluid Mech., 62(2), 209-221. https://doi.org/10.1017/S0022112074000644.
- Canpolat, C. (2015), "Characteristics of flow past a circular cylinder with a rectangular groove", Flow Meas. Instrum, 45, 233-246. https://doi.org/10.1016/j.flowmeasinst.2015.06.028.
- Canpolat, C. and Sahin, B. (2017), "Influence of single rectangular groove on the flow past a circular cylinder", Int. J. Heat Fluid Flow, 64, 79-88. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.001.
- Chae, S., Lee, S., Kim, J. and Lee, J.H. (2019), "Adaptive-passive control of flow over a sphere for drag reduction", Phys. Fluids, 31, 015107. https://doi.org/10.1063/1.5063908.
- Choi, H., Jeon, W.-P. and Kim, J. (2008) "Control of Flow Over a Bluff Body", Annu. Rev. Fluid Mech., 40, 113-139. https://doi.org/10.1146/annurev.fluid.39.050905.110149.
- Choi, J., Jeon, W.-P. and Choi, H. (2010). "Mechanism of drag reduction by dimples on a sphere", Phys. Fluids, 18(4), 041702. https://doi.org/10.1063/1.2191848.
- Chomaz, J.M., Bonneton, P. and Hopfinger, E.J. (1993), "The structure of the near wake of a sphere moving horizontally in a stratified fluid", J. Fluid Mech., 254, 1-21. https://doi.org/10.1017/S0022112093002009.
- Darekar, R.M. and Sherwin, S.J. (2001), "Flow past a squaresection cylinder with a wavy stagnation face" J. Fluid Mech. 426, 263-295. https://doi.org/10.1017/S0022112000002299.
- Derakhshandeh, J.F. and Mahbub Alam, Md., (2018), "Flow structures around rectangular cylinder in the vicinity of a Wall", Wind Struct. An Int. J., 26(5), 293-304. http://dx.doi.org/10.12989/was.2018.26.5.293.
- Derakhshandeh, J.F. and Mahbub Alam, M.D. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. http://dx.doi.org/10.12989/was.2020.30.5.475.
- Gozmen, B. and Akilli, H. (2014), "Flow control downstream of a circular cylinder by a permeable cylinder in deep water", Wind Struct. 19(4), 389-404. http://dx.doi.org/10.12989/was.2014.19.4.389.
- Hassanzadeh, R., Sahin, B. and Ozgoren, M. (2011), "Numerical investigation of flow structures around a sphere", Int. J. Comut. Fluid Dyn., 25, 535-545. https://doi.org/10.1080/10618562.2011.633489.
- Heng, H. and Sumner, D. (2020), "Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects", Wind Struct., 31(3), 255-267. http://dx.doi.org/10.12989/was.2020.31.3.255.
- Leblond, A. and Hardy, C. (2005), "Unifying calculation of vortex-induced vibrations of overhead conductors", Wind Struct. 8(2), 79-88. http://dx.doi.org/10.12989/was.2005.8.2.079.
- Lin, Y.F., Bai, H.L. and Alam, M.M. (2016), "The turbulent wake of a square prism with wavy faces", Wind Struct. 23(2), 127-142. https://doi.org/10.12989/was.2016.23.2.127.
- Li, K., Qian, G., Ge, Y., Zhao, L. and Di, J. (2019), "Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks\' VIV stability", Wind Struct. 28(2), 99-110. http://dx.doi.org/10.12989/was.2019.28.2.099.
- Li, Q., Cao, H., Li, G., Li, S. and Liu, D. (1999), "Optimal design of wind-induced vibration control of tall buildings and high rise structures", Wind Struct., 2(1), 69-83. http://dx.doi.org/10.12989/was.1999.2.1.069.
- Strommen, E. and Hjorth-Hansen, E. (2001), "On the use of tuned mass dampers to suppress vortex shedding induced vibrations", Wind Struct., 4(1), 19-30. http://dx.doi.org/10.12989/was.2001.4.1.019.
- Moradiana, N., Tingb, D.S.K. and Cheng, S. (2011), "Advancing drag crisis of a sphere via the manipulation of integral length scale", Wind Struct., 14(1), 35-53. https://doi.org/10.12989/was.2011.14.1.035.
- Norman, A.K. and McKeon, B.J. (2011), "The effect of a small isolated roughness element on the forces on a sphere in uniform flow", Exp. Fluids, 51, 1031-1045. https://doi.org/10.1007/s00348-011-1126-y
- Okbaz, A., Ozgoren, M., Dogan, S., Canpolat, C., Akilli, H. and Sahin, B. (2019), "Control of the flow past a sphere near a flat wall using passive jet", Ocean Eng. 187, 106120. https://doi.org/10.1016/j.oceaneng.2019.106120.
- Ozgoren, M. (2013), "Flow structures around an equilateral triangle arrangement of three spheres", Int. J. Multiph. Flow, 53, 54-64. https://doi.org/10.1016/j.ijmultiphaseflow.2013.02.001.
- Ozgoren, M., Okbaz, A., Dogan, S., Sahin, B. and Akilli, H. (2013), "Investigation of flow characteristics around a sphere placed in a boundary layer over a flat plate", Exp. Therm. Fluid Sci., 44, 62-74. https://doi.org/10.1016/j.expthermflusci.2012.05.014.
- Ozgoren, M., Okbaz, A., Dogan, S., Sahin, B. and Akilli, H. (2012), "Turbulent shear flow downstream of a sphere with and without an o-ring located over a plane boundary", EPJ Web Conf., 25, 01066. https://doi.org/10.1051/epjconf/20122501066.
- Ozgoren, M., Pinar, E., Sahin, B. and Akilli, H. (2011), "Comparison of flow structures in the downstream region of a cylinder and sphere", Int. J. Heat Fluid Flow, 32(6), 1138-1146. https://doi.org/10.1016/j.ijheatfluidflow.2011.08.003.
- Rastan, M.R., Sohankar, A., Doolan, C., Moreau, D., Shirani, E., and Alam, M.M. (2019), "Controlled flow over a finite square cylinder using suction and blowing", Int. J. Mech. Sci., 156, 410-434. https://doi.org/10.1016/j.ijmecsci.2019.04.013.
- Sooraj, P., Ramagya, M., Khan, M., Sharma, A. and Agrawal, A. (2020). "Effect of superhydrophobicity on the flow past a circular cylinder in various flow regimes", J. Fluid Mech., 897, A21. https://doi.org/10.1017/jfm.2020.371.
- Son, K., Choi, J., Jeon, W.P. and Choi, H. (2011), "Mechanism of drag reduction by a surface trip wire on a sphere", J. Fluid Mech. 672, 411-427. https://doi.org/10.1017/S0022112010006099.
- Terwagne, D., Brojan, M. and Reis, P.M. (2014), "Smart Morphable Surfaces for Aerodynamic Drag Control", Adv. Mater., 26, 6608-6611. https://doi.org/10.1002/adma.201401403.
- Tiwari, S.S., Pal, E., Bale, S., Minocha, N., Patwardhan, A.W., Nandakumar, K. and Joshi, J.B. (2020), "Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances", Powder Technol., 365, 215-243. https://doi.org/10.1016/j.powtec.2019.04.032.
- Tsuji, Y., Morikawa, Y. and Terashima, K. (1982), "Fluid-dynamic interaction between two spheres", Int. J. Multiph. Flow, 8(1), 71-82. https://doi.org/10.1016/0301-9322(82)90008-8.
- Tsutsui, T. (2008), "Flow around a sphere in a plane turbulent boundary layer", J. Wind Eng. Ind. Aerod., 96(6-7), 779-792. https://doi.org/10.1016/j.jweia.2007.06.031.
- Van Hout, R., Eisma, J., Elsinga, G.E. and Westerweel, J. (2018), "Experimental study of the flow in the wake of a stationary sphere immersed in a turbulent boundary layer", Phys. Rev. Fluids, 3(2), 024601. https://doi.org/10.1103/PhysRevFluids.3.024601.
- Wang, J. and Feng, L. (2018), Flow Control Techniques and Applications, Cambridge University Press. https://doi.org/10.1017/9781316676448.
- Zeng, L., Balachandar, S. and Fischer, P. (2005), "Wall-induced forces on a rigid sphere at finite Reynolds number", J. Fluid Mech., 536, 1-25. https://doi.org/10.1017/S0022112005004738.
- Zhang, J., Yang, Q. and Li, Q.S. (2013), "Developments and applications of a modified wall function for boundary layer flow simulations", Wind Struct., 17, 361-377. https://doi.org/10.12989/was.2013.17.4.361.
- Zhao, H., Liu, X., Li, D., Wei, A., Luo, K. and Fan, J. (2016), "Vortex dynamics of a sphere wake in proximity to a wall", Int. J. Multiph. Flow, 79, 88-106. https://doi.org/10.1016/j.ijmultiphaseflow.2015.10.005.