참고문헌
- Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J. Wind Eng. Ind. Aerod., 123, 291-299. https://doi.org/10.1016/j.jweia.2013.09.011
- Annand, W. (1953), "The resistance to air flow of wire gauzes", Aeronautic. J., 57, 141-146. https://doi.org/10.1017/S036839310013007X.
- Azizi, F. and Al Taweel, A. (2011), "Hydrodynamics of liquid flow through screens and screen-type static mixers", Chemical Eng. Commun., 198, 726-742. https://doi.org/10.1080/00986445.2011.532748.
- Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.
- Bofah, K. and Al-Hinai, K. (1986), "Field tests of porous fences in the regime of sand-laden wind", J. Wind Eng. Ind. Aerod., 23, 309-319. https://doi.org/10.1016/0167-6105(86)90051-6.
- Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: a computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
- Bruno, L., Fransos, D. And Giudice, A.L. (2018), "Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines", J. Wind Eng. Ind. Aerod., 173, 79-90. https://doi.org/10.1016/j.jweia.2017.12.005.
- Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
- Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic charac teristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.
- Buljac, A., Kozmar, H., Pospisil, S., Machacek, M. and Kuznetsov, S. (2020), "Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges", J. Bridge Eng., 25, 04020102. https://doi.org/ 10.1061/(ASCE)BE.1943-5592.0001631.
- Cabezon, D., Migoya, E. and Crespo, A. (2011), "Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer", Wind Energy, 14, 909-921. https://doi.org/10.1002/we.516.
- Cheli, F., Ripamonti, F., Sabbioni, E. and Tomasini, G. (2011), "Wind tunnel tests on heavy road vehicles: cross wind induced loads-part 2", J. Wind Eng. Ind. Aerod., 99, 1011-1024. https://doi.org/10.1016/j.jweia.2011.07.007.
- Chu, C.R., Chang, C.Y., Huang, C.J., Wu, T.R., Wang, C.Y. and Liu, M.Y. (2013), "Windbreak protection for road vehicles against crosswind", J. Wind Eng. Ind. Aerod., 116, 61-69. https://doi.org/10.1016/j.jweia.2013.02.001
- Collar, A. (1939), The Effect of a Gauze on the Velocity Distribution in a Uniform duct. r. & m. no. 1867, British ARC .
- Dalpe, B. and Masson, C. (2008), "Numerical study of fully developed turbulent flow within and above a dense forest", Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 11, 503-515. https://doi.org/10.1002/we.271.
- Dryden, H.L. and Schubauer, G. (1947), "The use of damping screens for the reduction of wind-tunnel turbulence", J. Aeronautic. Sci., 14, 221-228. https://doi.org/10.2514/8.1324
- Durhasan, T., Pinar, E., Ozkanc, G., Akilli, H. and Sahin, B. (2019), "The effect of shroud on vortex shedding mechanism of cylinder", J. Wind Eng. Ind. Aerod., 84, 51-61. https://doi.org/10.1016/j.apor.2019.01.007.
- Eckert, B. and Pfluger, F. (1942), The Resistance Coefficient of Commercial Round Wire Grids.
- Fang, F.M. and Wang, D. (1997), "On the flow around a vertical porous fence", J. Wind Eng. Ind. Aerod., 67, 415-424. https://doi.org/10.1016/S0167-6105(97)00090-1.
- Forces, E.F. (1998), Estimation of Shelter Provided by Solid and Porous Fences. Engineering Science Data Item.
- Galbraith, R.M. (1981), "Aspects of the flow in the immediate vicinity of a porous shroud", J. Wind Eng. Ind. Aerod., 8, 251-258. https://doi.org/10.1016/0167-6105(81)90024-6.
- Hu, G., Hassanli, S., Kwok, K.C. and Tse, K.T. (2017), "Windinduced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168, 91-100. https://doi.org/10.1016/j.jweia.2017.05.008.
- Huang, L.M., Chan, H.C. and Lee, J.T. (2012), "A numerical study on flow around nonuniform porous fences", J. Appl. Mathem. 2012. https://doi.org/10.1155/2012/268371
- Jacobs, A.F. (1985), "The normal-force coefficient of a thin closed fence", Bound. Lay. Meteorol., 32, 329-335. https://doi.org/10.1007/BF00121998.
- Kemper, F. and Feldmann, M. (2019), "Wind load assumptions for permeable cladding elements considering the installation context", J. Wind Eng. Ind. Aerod., 184, 277-288. https://doi.org/10.1016/j.jweia.2018.10.011
- Kosutova, K., van Hooff, T., Vanderwel, C., Blocken, B. and Hensen, J. (2019), "Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and cfd simulations", Build. Environ., 154, 263-280. https://doi.org/10.1016/j.buildenv.2019.03.019.
- Kozmar, H., Procino, L., Borsani, A. and Bartoli, G. (2014), "Optimizing height and porosity of roadway wind barriers for viaducts and bridges", Eng. Struct., 81, 49-61. https://doi.org/10.1016/j.engstruct.2014.09.029.
- Lee, S.J. and Lim, H.C. (2001), "A numerical study on flow around a triangular prism located behind a porous fence", Fluid Dyn. Res., 28, 209. https://doi.org/10.1016/S0169-5983(00)00030-7/meta.
- Lo, Y.L., Wu, Y.T., Fu, C.L. and Yu, Y.C. (2020), "Wind load reduction effects on inner buildings by exterior porous facades", Build. Environ., 183, 107148. https://doi.org/10.1016/j.buildenv.2020.107148.
- Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5: 1 rectangular cylinder", Europ. J. Mech. B/Fluids 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
- Park, C.W. and Lee, S.J. (2003), "Experimental study on surface pressure and flow structure around a triangular prism located behind a porous fence", J. Wind Eng. Ind. Aerod., 91, 165-184. https://doi.org/10.1016/S0167-6105(02)00343-4.
- Pomaranzi, G., Amerio, L., Schito, P., Lamberti, G., Gorle, C. and Zasso, A. (2022), "Wind tunnel pressure data analysis for peak cladding load estimation on a high-rise building", J. Wind Eng. Ind. Aerod., 220, 104855. https://doi.org/10.1016/j.jweia.2021.104855.
- Pomaranzi, G., Bistoni, O., Schito, P., Rosa, L. and Zasso, A. (2021a), "Wind effects on a permeable double skin facade, the ENI head office case study", Fluids 6, 415. https://doi.org/10.3390/fluids6110415.
- Pomaranzi, G., Bistoni, O., Schito, P. and Zasso, A. (2021b), "Numerical modelling of three-dimensional screens, treated as porous media", Wind Struct., 33, 409-422. https://doi.org/10.12989/was.2021.33.5.409.
- Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.
- Prandtl, L. (1933), Attaining a Steady Air Stream in Wind Tunnels.
- Price, P. (1956), "Suppression of the fluid-induced vibration of circular cylinders", J. Eng. Mech. Div., 82, 1030-1031. https://doi.org/10.1061/JMCEA3.0000008.
- Raju, K.R., Garde, R., Singh, S. and Singh, N. (1988), "Experimental study on characteristics of flow past porous fences", J. Wind Eng. Ind. Aerod., 29, 155-163. https://doi.org/10.1016/0167-6105(88)90154-7.
- Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5: 1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
- Schubauer, G.B., Spangenberg, W.G. and Klebanoff, P. (1950), Aeodynamic Characteristics of Damping Screens. Technical Report. National Aeronautics and Space Administration Washington DC.
- Shaw, R.H. and Schumann, U. (1992), "Large-eddy simulation of turbulent flow above and within a forest", Bound. Lay. Meteorol., 61, 47-64. https://doi.org/10.1007/BF02033994.
- Shih, T.H. (1993), "A Realizable Reynolds Stress Algebraic Equation Model (Vol. 105993). National Aeronautics and Space Administration, Washington, D.C., United States.
- Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J., 1995. A new k-∈ eddy viscosity model for high Reynolds number turbulent flows. Computers & fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
- Sturge, D., Sobotta, D., Howell, R., While, A. and Lou, J. (2015), "A hybrid actuator disc-full rotor cfd methodology for modelling the effects of wind turbine wake interactions on performance", Renew. Energy, 80, 525-537. https://doi.org/10.1016/j.renene.2015.02.053.
- Taylor, G., Batchelor, G., Dryden, H. and Schubauer, G. (1949), "The effect of wire gauze on small disturbances in a uniform stream", Quart. J. Mech. Appl. Mathem., 2, 1-29. https://doi.org/10.1093/qjmam/2.1.1.
- Walshe, D. and Wooton, L. (1970), "Preventing wind-induced oscillations of structures of circular section", Proceedings of the Institution of Civil Engineers 47, 1-24. https://doi.org/10.1680/iicep.1970.6689.
- Wieghardt, K. (1953), "On the resistance of screens", Aeronautic. Quart., 4, 186-192. https://doi.org/10.1017/S0001925900000871.
- Wong, H. and Kokkalis, A. (1982), "A comparative study of three aerodynamic devices for suppressing vortex-induced oscillation", J. Wind Eng. Ind. Aerod., 10, 21-29. https://doi.org/10.1016/0167-6105(82)90051-4.
- Xu, M., Patruno, L., Lo, Y.L. and de Miranda, S. (2020), "On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step", J. Wind Eng. Ind. Aerod., 207, 104377. https://doi.org/10.1016/j.jweia.2020.104377.
- Xu, M., Patruno, L., Lo, Y.L. and de Miranda, S. (2022), "On the numerical simulation of perforated bluff-bodies: a CFD study on a hollow porous 5:1 rectangular cylinder", Wind Struct., 34, 1. https://doi.org/10.12989/was.2022.34.1.001.
- Yoshizawa, A. (1986), "Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling", Phys. Fluids, 29, 2152-2164. https://doi.org/10.1063/1.865552.