DOI QR코드

DOI QR Code

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • 투고 : 2020.07.08
  • 심사 : 2022.06.07
  • 발행 : 2022.06.10

초록

This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

키워드

참고문헌

  1. ABAQUS-6.14 (2014), Standard User's Manual, Hibbitt, Karlsson and Sorensen, Inc."
  2. Abbasnia, R., Vetr, M.G.H., Ahmadi, R. and Kafi, M.A. (2008), "Experimental and analytical investigation on the steel ring ductility", J. Sharif Sci. Technol., 52, 41-48.
  3. AISC 360-16 (2016), Specification for Structural Steel Buildings (ANSI/AISC 360-16)", American Institute of Steel Construction, Chicago, IL.
  4. Andalib, Z., Kafi, M. A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016.
  5. Azandariani, M.G., Gholami, M., Nikzad, A., Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/ANR.2022.12.1.037.
  6. Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037.
  7. Cheraghi, A. and Zahrai, S.M. (2016), "Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames", J. Constr. Steel Res., 127, 120-135. https://doi.org/10.1016/J.JCSR.2016.07.024.
  8. Dehghani, E. (2005), Developing the Practical Plastic Zone Analysis Method in Steel Structures, University of Tehran.
  9. Deihim, M. and Kafi, M.A. (2017), "A parametric study into the new design of a steel energy-absorbing connection", Eng. Struct., 145, 22-33. https://doi.org/10.1016/j.engstruct.2017.04.056.
  10. Elnashai, A.S. and Di Sarno, L. (2008), Fundamentals of Earthquake Engineering, Wiley, New York, United States. https://doi.org/10.1002/9780470024867.
  11. FEMA 356 (2000), , Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency Washington, DC, USA.
  12. FEMA 461 (2007), Interim Protocols for Determining Seismic Performance Characteristics of Structural and Nonstructural Components, Federal Emergency Management Agency, Washington, DC, USA.
  13. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151, 106977. https://doi.org/10.1016/j.soildyn.2021.106977.
  14. Gholhaki, M., Eshrafi, B., Gorji Azandariani, M. and Rezaeifar, O. (2021), "Seismic assessment of linked-column frame structural system considering soil-structure effects", Structures, 33, 2264- 2272. https://doi.org/10.1016/j.istruc.2021.06.005.
  15. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Walled Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751.
  16. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2020b), "Experimental and numerical investigation of low-yieldstrength (LYS) steel plate shear walls under cyclic loading", Eng. Struct., 203, https://doi.org/10.1016/j.engstruct.2019.109866.
  17. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020c), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  18. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021a), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  19. Gorji Azandariani, M., Rousta, A.M., Mohammadi, M., Rashidi, M. and Abdolmaleki, H. (2021b), "Numerical and analytical study of ultimate capacity of steel plate shear walls with partial plate-column connection (SPSW-PC)", Structures, 33, 3066- 3080. https://doi.org/10.1016/j.istruc.2021.06.046.
  20. Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021c), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  21. Jahandari, S., Mohammadi, M., Rahmani, A., Abolhasani, M., Miraki, H., Mohammadifar, L., Kazemi, M., Saberian, M. and Rashidi, M. (2021), "Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres", Materials (Basel)., MDPI, 14(22), 7065. https://doi.org/10.3390/ma14227065.
  22. Karnovsky, I.A. and Lebed, O. (2010), Advanced Methods of Structural Analysis, Springer, New York, United States. https://doi.org/10.1007/978-1-4419-1047-9.
  23. Koetaka, Y., Chusilp, P., Zhang, Z., Ando, M., Suita, K., Inoue, K. and Uno, N. (2005), "Mechanical property of beam-to-column moment connection with hysteretic dampers for column weak axis", Eng. Struct., 27(1), 109-117. https://doi.org/10.1016/j.engstruct.2004.09.002.
  24. Mahjoubi, S., and Maleki, S. (2016), "Seismic performance evaluation and design of steel structures equipped with dualpipe dampers", J. Constr. Steel Res., 122, 25-39. https://doi.org/10.1016/J.JCSR.2016.01.023.
  25. Maleki, S. and Bagheri, S. (2010a), "Pipe damper, Part I: Experimental and analytical study", J. Constr. Steel Res., 66(8), 1088-1095. https://doi.org/10.1016/j.jcsr.2010.03.010.
  26. Maleki, S. and Bagheri, S. (2010b), "Pipe damper, Part II: Application to bridges." J. Constr. Steel Res., 66(8), 1096-1106. https://doi.org/10.1016/j.jcsr.2010.03.011.
  27. Maleki, S. and Mahjoubi, S. (2013), "Dual-pipe damper", J. Constr. Steel Res., 85, 81-91. https://doi.org/10.1016/j.jcsr.2013.03.004.
  28. Maleki, S. and Mahjoubi, S. (2014), "Infilled-pipe damper." J. Constr. Steel Res., 98, 45-58. https://doi.org/10.1016/j.jcsr.2014.02.015.
  29. Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z. and Siddique, R. (2022), "Clayey soil stabilization using alkaliactivated volcanic ash and slag", J. Rock Mech. Geotech. Eng., 14(2), 576-591. https://doi.org/10.1016/j.jrmge.2021.08.012.
  30. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structures, 22, 186-199. https://doi.org/10.1016/j.istruc.2019.07.014.
  31. Mohammadifar, L., Miraki, H., Rahmani, A., Jahandari, S., Mehdizadeh, B., Rasekh, H., Samadi, P. and Samali, B. (2022), "Properties of lime-cement concrete containing various amounts of waste tire powder under different ground moisture conditions", Polymers (Basel), 14(3), 482. https://doi.org/10.3390/polym14030482.
  32. Mohebkhah, A. and Azandariani, M.G. (2015), "Lateral-torsional buckling of Delta hollow flange beams under moment gradient", Thin-Walled Struct., 86, 167-173. https://doi.org/10.1016/j.tws.2014.10.011.
  33. Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin-Walled Struct., 102, 215-221. https://doi.org/10.1016/j.tws.2016.02.001.
  34. Mohebkhah, A. and Azandariani, M.G. (2020), "Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches", Eng. Struct., 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864.
  35. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers." Eng. Struct., 31(9), 1997- 2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
  36. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/SEM.2021.80.2.129.
  37. Rousta, A.M. and Zahrai, S.M. (2017), "Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames", Struct. Eng. Mech., 64(3), 301-310. https://doi.org/10.12989/sem.2017.64.3.301.
  38. Rousta, A.M. and Zahrai, S.M. (2018), "Parametric study of a proposed hybrid damping system : KE + VLB in Chevron braced frames", Acta Tech., 63(4B), 1-16.
  39. Sadeghian, F., Haddad, A., Jahandari, S., Rasekh, H. and Ozbakkaloglu, T. (2021), "Effects of electrokinetic phenomena on the load-bearing capacity of different steel and concrete piles: A small-scale experimental study", Can. Geotech. J., 58(5), 741-746. https://doi.org/10.1139/cgj-2019-0650.
  40. Sadeghian, F., Jahandari, S., Haddad, A., Rasekh, H. and Li, J. (2022), "Effects of variations of voltage and pH value on the shear strength of soil and durability of different electrodes and piles during electrokinetic phenomenon", J. Rock Mech. Geotech. Eng., 14(2), 625-636. https://doi.org/10.1016/j.jrmge.2021.07.017.
  41. Usefvand, M., Rousta, A.M., Azandariani, M.G. and Abdolmaleki, H. (2021), "Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior", Smart Struct. Syst., 28(4), 579-592. https://doi.org/10.12989/SSS.2021.28.4.579.
  42. Vilela, P.M.L., Carvalho, H., Grilo, L.F., Montenegro, P.A. and Calcada, R.B. (2019), "Unitary model for the analysis of bolted connections using the finite element method", Eng. Fail. Anal., 104, 308-320. https://doi.org/10.1016/j.engfailanal.2019.06.001.
  43. Zahrai, S.M. and Hosein Mortezagholi, M. (2018), "Cyclic performance of an elliptical-shaped damper with shear diaphragms in chevron braced steel frames", J. Earthq. Eng., 22(7), 1209-1232. https://doi.org/10.1080/13632469.2016.1277436.