DOI QR코드

DOI QR Code

The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch

  • Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Abanoz, Merve (Department of Construction Technology, Kastamonu University) ;
  • Yaylaci, Ecren Uzun (Surmene Faculty of Marine Science, Karadeniz Technical University) ;
  • Olmez, Hasan (Department of Marine Engineering Operations, Karadeniz Technical University) ;
  • Sekban, Dursun Murat (Department of Marine Engineering Operations, Karadeniz Technical University) ;
  • Birinci, Ahmet (Department of Civil Engineering, Karadeniz Technical University)
  • 투고 : 2021.09.21
  • 심사 : 2022.04.18
  • 발행 : 2022.06.10

초록

The solution of contact problems is extremely important as we encounter many situations involving such problems in our daily lives. One of the most important parameters effective in solving contact problems is the materials of the parts in contact. While it is relatively easy to solve the contact mechanics of the systems created with traditional materials with a homogeneous microstructure and mechanical distribution, it may be more difficult to solve the contact problem of new generation materials that do not show a homogeneous distribution. As a result of this situation, it is seen that studies on contact problems of materials that do not exhibit such a homogeneous internal structure and mechanical properties are extremely limited in the literature. In this context, in this study, analytical and numerical analyzes of a contact problem created using functionally graded materials were carried out and the results were evaluated mutually. It has been decided that the contact areas and contact pressures acquired from numerical method are reasonably appropriate with the results obtained from the analytical method.

키워드

참고문헌

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/SEM.2015.54.1.069.
  2. Ainsworth, M. (1999), "Identification and a posteriori estimation of transported errors in finite element analysis", Comput. Methods Appl. Mech. Eng., 176(1), 3-18. https://doi.org/10.1016/S0045-7825(98)00327-2.
  3. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  4. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A Solids, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  5. ANSYS (2013), Mechanical APDL, ANSYS Contact Technology Guide, Ansys, Inc., Canonsburg, Pennsylvania, U.S.A.
  6. Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.
  7. Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325.https://doi.org/10.12989/SCS.2018.27.3.311.
  8. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178.https://doi.org/10.12989/GAE.2019.18.2.161.
  9. Cao, R., Li, L., Li, X. and Mi, C. (2021), "On the frictional receding contact between a graded layer and an orthotropic substrate indented by a rigid flat-ended stamp", Mech. Mater., 158, 103847. https://doi.org/10.1016/j.mechmat.2021.103847.
  10. Cao, R. and Mi, C. (2021), "On the receding contact between a graded and a homogeneous layer due to a flat-ended indenter", Math. Mech. Solids, 27(5), 775-793. https://doi.org/10.1177/10812865211043152.
  11. Cannillo, V., Lusvarghi, L., Siligardi, C. and Sola, A. (2007), "Prediction of the elastic properties profile in glass-alumina functionally graded materials", J. Eur. Ceram. Soc., 27(6), 2393-2400. https://doi.org/10.1016/j.jeurceramsoc.2006.09.009.
  12. Erdogan, F. (1978), "Mixed boundary value problems in mechanics", In: Nemat-Nasser, S. Mechanics Today, Pergamon Press, New York
  13. Farokhian, A. and Kolahchi, R, (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  14. Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., Ebneabbasi, P., Fatehi Marji, M. and Guo, M. (2021), "Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2021.1989730.
  15. Haeri, H. and Sarfarazi, V. (2016), "Numerical simulation of tensile failure of concrete using particle flow code (PFC) ", Comput. Concr., 18(1), 53-68. https://doi.org/10.12989/cac.2016.18.1.039.
  16. Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A., Nezamabadi, M.F. and Karbala, M. (2018), "Simulation of crack initiation and propagation in three point bending test using PFC2D", Struct. Eng. Mech, 66(4), 453-463. https://doi.org/10.12989/sem.2018.66.4.453.
  17. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/ANR.2018.6.4.299.
  18. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/SCS.2019.31.4.419.
  19. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849.https://doi.org/10.1016/j.compstruct.2012.09.001.
  20. Kahya, V. (1997), Frictionless Contact Problem Betwwen an Elastic Layer Bondedto a Rigid Support and a Rigid Stamp, Karadeniz Technical University, Master Thesis, Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
  21. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels". Eur. J. Mech. A Solids, 82. https://doi.org/10.1016/j.euromechsol.2020.104010.
  22. Keshtegar, B., Bagheri, M., Meng, D., Kolahchi, R. and Trung, N.T. (2021), "Fuzzy reliability analysis of nanocomposite ZnO beams using hybrid analytical-intelligent method", Eng. Comput., 37(4), 2575-2590. https://doi.org/10.1007/s00366- 020-00965-5.
  23. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  24. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  25. Kolahchi, R., Tian, K., Keshtegar, B., Li, Z., Trung, N.T. and Thai, D.K. (2022), "AK-GWO: A novel hybrid optimization method for accurate optimum hierarchical stiffened shells", Eng. Comput., 38, 29-41.https://doi.org/10.1007/s00366-020-01124-6.
  26. Krenk, S. (1975), "On quadrature formulas for singular integral equations of the first and the second kind", Q. Appl. Math., 33, 225-232. https://doi.org/10.1090/qam/448967
  27. Lazzari, P.M., Filho, A.C., Lazzari, B.M. and Pacheco, A.R. (2017), "Structural analysis of a prestressed segmented girder using contact elements in ANSYS", Comput. Concr., 20(3), 319-327.https://doi.org/10.12989/CAC.2017.20.3.319.
  28. Lezgy-Nazargah, M. and Meshkani, Z. (2018), "An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations", Struct. Eng. Mech., 66(5), 665-676. https://doi.org/10.12989/SEM.2018.66.5.665.
  29. Li, X., Jiang, L. and Mi, C. (2019), "Flamant solution of a halfplane with surface flexural resistibility and its applications to nanocontact mechanics", Math. Mech. Solids, 25(3), 664-681. https://doi.org/10.1177/1081286519887205.
  30. Li, X. and Mi, C. (2019), "Effects of surface tension and Steigmann-Ogden surface elasticity on Hertzian contact properties", Int. J. Eng. Sci., 145, 103165. https://doi.org/10.1016/j.ijengsci.2019.103165.
  31. Liu, Z., Yan, J. and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329.
  32. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/SEM.2015.54.4.607.
  33. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational", finite element and artificial neural network methods", J. Appl. Math. Mech., 102(2). https://doi.org/10.1002/zamm.202100287.
  34. Payne, N. and Pochiraju, K. (2019), "Methodologies for constitutive model parameter identification for strain locking materials", Mech. Mater., 134, 30-37. https://doi.org/10.1016/j.mechmat.2019.04.004.
  35. Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concr., 18(2), 235-266. https://doi.org/10.12989/cac.2016.18.2.235.
  36. Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.
  37. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  38. Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
  39. Wakjira, T.G., Al-Hamrani, A., Ebead, U. and Alnahhal, W. (2022), "Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models", Compos. Struct., 287. https://doi.org/10.1016/j.compstruct.2022.115381.
  40. Yan, J. and Mi, C. (2018), "On the receding contact between a homogeneous elastic layer and a half-plane substrate coated with FGMs", Int. J. Comput. Methods, 15(1), 1-21. https://doi.org/10.1142/S0219876218440085.
  41. Yaylaci, M., Oner, E. and Birinci, A. (2014), "Comparison between Analytical and ANSYS Calculations for a Receding Contact Problem", J. Eng. Mech., 140(9), 04014070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000781.
  42. Yaylaci, M. Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  43. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  44. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concr., 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  45. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concr., 27(3), 199-210. https://doi.org/10.12989/CAC.2021.27.3.199.
  46. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  47. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/SEM.2021.78.5.585.