References
- Alfano, G. and Crisfield, M.A. (2001), "Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues", Int. J. Numer. Meth. Eng., 50(7), 1701-1736. https://doi.org/10.1002/nme.93.
- ANSI/AISC (2016), Seismic Provisions for Structural Steel Buildings. In AMERICAN I. Chicago.
- Araujo, H.A.M., Machado, J.J.M., Marques, E.A.S. and da Silva, L.F.M. (2017), "Dynamic behaviour of composite adhesive joints for the automotive industry", Compos. Struct., 171, 549-561. https://doi.org/10.1016/j.compstruct.2017.03.071.
- Araujo, M., Macedo, L., & Castro, J. M. (2017). Evaluation of the rotation capacity limits of steel members defined in EC8-3. Journal of Constructional Steel Research, 135, 11-29. https://doi.org/10.1016/j.jcsr.2017.04.004.
- Camanho, P.P., Davila, C.G. and de Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438. https://doi.org/10.1177/0021998303034505.
- Carbas, R.J.C., Marques, E.A.S. and da Silva, L.F.M. (2021), "The influence of epoxy adhesive toughness on the strength of hybrid laminate adhesive joints", Appl. Adhesion Sci., 9(1), 1. https://doi.org/10.1186/s40563-020-00132-5.
- Carbas, R.J.C., Palmares, M.P. and da Silva, L.F.M. (2020), "Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations", Manufact. Rev., 7, 2. https://doi.org/10.1051/mfreview/2019027.
- CEN (1992), Eurocode 3: Design of Steel Structures-Part 1.1: General Rules and Rules for Buildings, In CEN, European Committee for Standardization.
- Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plasticity, 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
- Chen, Y., Sun, W. and Chan, T.-M. (2014), "Cyclic stress-strain behavior of structural steel with yieldstrength up to 460 N/mm2", Front. Struct. Civil Eng., 8(2), 178-186. https://doi.org/10.1007/s11709-014-0245-y.
- Cheng, X. and Chen, Y. (2018), "Ultimate strength of H-sections under combined compression and uniaxial bending considering plate interaction", J. Construct. Steel Res., 143, 196-207. https://doi.org/10.1016/j.jcsr.2017.12.019.
- D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behavior of steel beams under non-uniform bending", J. Construct. Steel Res., 78, 144-158. https://doi.org/10.1016/j.jcsr.2012.07.003.
- Egilmez, O.O. and Doruk Yormaz. (2011), "Cyclic testing of steel I-Beams reinforced with GFRP", Steel Compos. Struct., 11(2), 93-114. https://doi.org/10.12989/scs.2011.11.2.093
- Ekiz, E., El-Tawil, S., Parra-Montesinos, G. and Goel, S. (2004), "Enhancing plastic hinge behavior in steel flexural members using CFRP wraps", In Proc., 13th World Conf. on Earthquake Engineering. Vancouver.
- El-Tawil, S., Ekiz, E., Goel, S. and Chao, S.H. (2011), "Retraining local and global buckling behavior of steel plastic hinges using CFRP", J. Construct. Steel Res., 67(3), 261-269. https://doi.org/10.1016/j.jcsr.2010.11.007.
- Elkady, A. and Lignos, D.G. (2018), "Improved Seismic Design and Nonlinear Modeling Recommendations for Wide-Flange Steel Columns", J. Struct. Eng., 144(9), 04018162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002166.
- Falk, M.L., Needleman, A. and Rice, J.R. (2001), "A critical evaluation of cohesive zone models of dynamic fractur", Le Journal de Physique IV, 11(PR5), Pr5-43-Pr45-50. https://doi.org/10.1051/jp4:2001506.
- Haghani, R. (2010), "Analysis of adhesive joints used to bond FRP laminates to steel members - A numerical and experimental study", Constr. Build. Mater, 24(11), 2243-2251. https://doi.org/doi: 10.1016/j.conbuildmat.2010.04.032.
- Harries, K.A., Peck, A.J. and Abraham, E.J. (2009), "Enhancing stability of structural steel sections using FRP", Thin-Wall. Struct., 47(10), 1092-1101. https://doi.org/10.1016/j.tws.2008.10.007.
- Hildebrand, M. (1994), "The strength of adhesive-bonded joints between fibre-reinforced plastics and metals: Analysis, shape optimization and experiments", VTT Technical Research Centre of Finland. VTT Publication s(No. 192).
- Kaddaha, M.A., Younes, R. and Lafon, P. (2021), "Homogenization method to calculate the stiffness matrix of laminated composites. Eng, 2(4), 416-434. https://doi.org/10.3390/eng2040026.
- Kato, B. (1989), "Rotation capacity of H-section members as determined by local buckling", J. Construct. Steel Res., 13(2-3), 95-109. https://doi.org/10.1016/0143-974X(89)90008-4. K
- ato, B. and Nakao, M. (1994), "Strength and deformation capacity of H-Shpaed steel members governed by local buckling", J. Struct. Construct. Eng., 59(458), 127-136. https://doi.org/10.3130/aijs.59.127_2.
- Kenane, M.B.A.M. (1996), "Measurement of mixed mode delamination fracturetoughness of uniderectional Glass-Epoxy composites with mixed mode bending apparatus", Compos. Sci. Technol, 56(196AD), 859-865. https://doi.org/http://doi.org/10.1016/0266-3538(96)00005-X.
- Landolfo, R., D'Aniello, M., Costanzo, S., Tartaglia, R., Demonceau, J.F., Jaspart, J.P. and Bompa, D. (2018), EQUALJOINTS PLUS-Volume with Information Borchures for 4 Seimsically Qualified Joints. ECCS.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
- Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
- Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002896.
- Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
- Machado, J., Hayashi, A., Nunes, P., Marques, E., Carbas, R., Sato, C. and da Silva, L. (2019), "Strain rate dependence of a crash resistant adhesive as a function of temperature for the automotive industry", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(11), 2189-2203. https://doi.org/10.1177/1464420719836914.
- Machado, J.J.M., Gamarra, P.M.R., Marques, E.A.S. and da Silva, L.F.M. (2018), "Improvement in impact strength of composite joints for the automotive industry", Compos. Part B: Eng., 138, 243-255. https://doi.org/10.1016/j.compositesb.2017.11.038.
- Mohabeddine, A., Correia, J., Aires Montenegro, P., De Jesus, A., Miguel Castro, J. and Berto, F. (2021), "Probabilistic S-N curves for CFRP retrofitted steel details", Int. J. Fatigue, 148, 106205. https://doi.org/10.1016/j.ijfatigue.2021.106205.
- Mohabeddine, A., Correia, J.A.F.O., Castro, J.M., Montenegro, P., De Jesus, A.M.P. and Calcada, R.A.B. (2021), "Numerical investigation on the fatigue life of non-cracked metallic plates repaired with bonded CFRP", Ce/papers, 4(2-4), 1135-1144. https://doi.org/10.1002/cepa.1405.
- Mohabeddine, A., Correia, J.A.F.O., Montenegro, P.A. and Castro, J.M. (2021), "Fatigue crack growth modelling for cracked small-scale structural details repaired with CFRP", Thin-Wall. Struct., 161, 107525. https://doi.org/10.1016/j.tws.2021.107525.
- Mohabeddine, A., Koudri, Y.W., Correia, J.A.F.O. and Castro, J. M. (2021), "Rotation capacity of steel members for the seismic assessment of steel buildings", Eng. Struct., 244, 112760. https://doi.org/10.1016/j.engstruct.2021.112760.
- Mohabeddine, A.I., Kouidri, Y.W., Castro, J.M. and Correia, J.A.F.O. (2018), Numerical Simulation and Calibration of the Cyclic Behavior of Structural Steel Under Different Loading Protocols. XIX International Colloquium on Mechanical Fatigue of Metals, Porto, Portugal, September.
- Reinforcements, S.P. (2021), "Technical datasheet C laminates. In O. A. https://www.spreinforcement.eu/sites/default/files/field_product_col_doc_file/r_c-laminates_pub_tds_prod_c-laminates_v4.102020_eu_en.pdf.(Ed.).
- Santos, D.G.D., Carbas, R.J.C., Marques, E.A.S. and da Silva, L.F. M. (2019), "Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers", Compos. Part B: Eng., 165, 386-396. https://doi.org/10.1016/j.compositesb.2019.01.096.
- Schellekens, J.C.J. and de Borst, R. (1993), "A non-linear finite element approach for the analysis of mode-I free edge delamination in composites", Int. J. Solids Struct., 30(9), 1239-1253. https://doi.org/10.1016/0020-7683(93)90014-X.
- Standards, B. (1993), BS EN 10034:1993 Structural Steel I and H sections Tolerances on Shape and Dimensions.
- Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fracture Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025.
- Venture, S.J. (1997), "Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens", Rep. No. SAC/BD-97, 2.
- Wake, R.D.A.A.W.C. (1986), Structural Adhesive Joint in Engeneering.
- Yang, Q. and Cox, B. (2005), "Cohesive models for damage evolution in laminated composites", Int. J. Fracture, 133(2), 107-137. https://doi.org/10.1007/s10704-005-4729-6.
- Yang, Y., Zhao, J., Zhang, S., Marques, E., Carbas, R., Machado, J. and da Silva, L. (2021), "Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded joints", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(11), 2423-2440. https://doi.org/10.1177/14644207211021385.
- Zou, Z., Reid, S.R., Li, S. and Soden, P.D. (2002), "Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation", J. Compos. Mater., 36(4), 477-499. https://doi.org/10.1177/0021998302036004539.