DOI QR코드

DOI QR Code

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Daikh, Ahmed Amine (Department of Technology, University Center of Naama) ;
  • Melaibari, Ammar (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Wagih, Ahmed (Faculty of Engineering, Mechanical Design and Production Department, Zagazig University) ;
  • Othman, Ramzi (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Almitani, Khalid H (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Hamed, Mostafa A. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University) ;
  • Abdelrahman, Alaa (Faculty of Engineering, Mechanical Design and Production Department, Zagazig University) ;
  • Eltaher, Mohamed A. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University)
  • Received : 2021.02.25
  • Accepted : 2022.05.16
  • Published : 2022.06.10

Abstract

The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Keywords

Acknowledgement

This research was funded by institutional Fund Projects under grant no. (IFPRC-012-135-2020). The authors gratefully acknowledge the technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.

References

  1. Abazid, M.A., Zenkour, A.M. and Sobhy, M. (2020), "Wave propagation in FG porous GPLs-reinforced nanoplates under inplane mechanical load and Lorentz magnetic force via a new quasi 3D plate theory", Mech. Based Des. Struct. Machines, 1-20. https://doi.org/10.1080/15397734.2020.1769651.
  2. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021a), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Mathem. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
  3. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Mathema. Modelling, 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  4. Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polymer Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  5. Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aeros. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.
  6. Belarbi, M.A, Houari, M.S.A., HIRANE, H. and Daikh, A.A. (2020), "An efficient nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel parabolic shear deformation theory", Compos. Struct., https://doi.org/10.1016/j.compstruct.2021.113712.
  7. Bensaid, I. ad Daikh, A.A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc IMechE Part C: J Mechanical Engineering Science. https://doi.org/10.1177/0954406220916481.
  8. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. http://dx.doi.org/10.12989/anr.2018.6.2.147.
  9. Dabbagh, A., Rastgoo, A. and Ebrahimi, F. (2020), "Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01064-1.
  10. Dai, G. and Mishnaevsky Jr, L. (2014), "Graphene reinforced nanocomposites: 3D simulation of damage and fracture", Comput. Mater. Sci., 95, 684-692. http://dx.doi.org/10.1016/j.commatsci.2014.08.011.
  11. Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Thermal Stresses, 41(2), 139-159. https://doi.org/10.1080/01495739.2017.1393644.
  12. Daikh, A.A. and Zenkour, A.M. (2020e), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6(SI), 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166.
  13. Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi, A. (2020b), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct. Machines, 1-29. https://doi.org/10.1080/15397734.2020.1752232.
  14. Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020d), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Engineering Research Express, 2(1), 015006. https://doi.org/10.1088/2631-8695/ab638c.
  15. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandwich Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790.
  16. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020c), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  17. Daikh, A. A., Houari, M. S. A., & Eltaher, M. A. (2021b), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  18. Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1(1), 015022. https://doi.org/10.1088/2631-8695/ab38f9.
  19. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2021a), "Analysis of axially temperaturedependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.
  20. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021c), "Buckling Analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
  21. Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mat. Res. Express. 6(6), 065702. https://doi.org/10.1088/2053-1591/ab097b.
  22. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2020), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(4), 293-310. http://dx.doi.org/10.12989/anr.2019.7.5.293.
  23. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int J Eng Sci, 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  24. Essen, I. (2017), "A modified FEM for transverse and lateral vibration analysis of thin beams under a mass moving with a variable acceleration", Latin Amer. J. Solids Struct., 14(3), 485- 511. https://doi.org/10.1590/1679-78253180.
  25. Essen, I. (2019a), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Europ. J. Mech.-A/Solids, 78, 103841. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  26. Essen, I. (2019b), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033.
  27. Essen, I. (2020a), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", Int. J. Mech. Sci., 188, 105937. https://doi.org/10.1016/j.ijmecsci.2020.105937.
  28. Essen, I. (2020b), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  29. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.
  30. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2020b), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.
  31. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021d), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Europ. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7.
  32. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021c), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
  33. Esen, I., O zarpa, C. and Eltaher, M.A. (2021b), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  34. Esmaeilzadeh, M., Golmakani, M.A., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. http://dx.doi.org/10.12989/anr.2021.10.2.151.
  35. Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339.
  36. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. http://dx.doi.org/10.1016/j.compositesb.2016.11.024.
  37. Fouaidi, M., Jamal, M., Zaite, A. and elouaggadia, N. (2021), "Bending analysis of functionally graded graphene oxide powder-reinforced composite beams using a meshfree method", Aeros. Sci. Technol., 110, 106479. https://doi.org/10.1016/j.ast.2020.106479.
  38. Ghannadpour, S.A.M. and Moradi, F. (2020), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://dx.doi.org/10.12989/anr.2019.7.5.311.
  39. Gholami, R. and Ansari, R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Mathem. Modelling, 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038.
  40. Hadad, M., Babazade, A. and Safarabadi, M. (2020), "Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites", Int. J. Adv. Manufact. Technol., 109(9), 2535-2547. https://doi.org/10.1007/s00170-020-05838-1.
  41. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  42. Kutlu, H. and Omurtag, H.M. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65, 64-74. http://dx.doi.org/10.1016/j.ijmecsci.2012.09.004.
  43. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  44. Lin, F., Xiang, Y. and Shen, H.S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites-a molecular dynamics simulation", Compos. Part B: Eng., 111, 261-269. http://dx.doi.org/10.1016/j.compositesb.2016.12.004.
  45. Mehrez, S., Karati, S.A., DolatAbadi, P.T., Shah, S.N.R., Azam, S., Khorami, M. and Assilzadeh, H. (2020), "Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory", Adv. Nano Res., 9(4), 221-235. http://dx.doi.org/10.12989/anr.2020.9.4.221.
  46. Melaibari, A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alexandria Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.
  47. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces", Int. J. Mech. Sci., 188, 105966. https://doi.org/10.1016/j.ijmecsci.2020.105966.
  48. Ozarpa, C and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6812.
  49. Qin, B., Wang, Q., Zhong, R., Zhao, X. and Shuai, C. (2020), "A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: a comparative and parametric study", Int. J. Mech. Sci., 187, 105896. https://doi.org/10.1016/j.ijmecsci.2020.105896.
  50. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. http://dx.doi.org/10.12989/anr.2019.7.4.265.
  51. Sahmani, S. and Aghdam, M.M. (2017), "Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams", Compos. Struct., 179, 77-88. https://doi.org/10.1016/j.compstruct.2017.07.064.
  52. Shahrjerdi, A. and Yavari, S. (2018), "Free vibration analysis of functionally graded graphene-reinforced nanocomposite beams with temperature-dependent properties", J. Brazil. Soc. Mech. Sci. Eng., 40(1), 1-15. https://doi.org/10.1007/s40430-017-0943-1.
  53. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "nvestigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. http://dx.doi.org/10.12989/anr.2020.8.4.265.
  54. Shen, H.S., Xiang, Y. and Lin, F. (2017), "Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations", Thin-Wall. Struct., 118, 229-237. http://dx.doi.org/10.1016/j.tws.2017.05.006.
  55. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A. and Ruoff, R.S. (2006), "Graphenebased composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969.
  56. Thai, C.H., Ferreira, A.J.M., Tran, T.D. and Phung-Van, P. (2020), "A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory", Compos. Struct., 234, 111695. https://doi.org/10.1016/j.compstruct.2019.111695.
  57. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Europ. J. Mech.A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  58. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Abdel Wahab, M. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649, https://doi.org/10.1016/j.compstruct.2017.10.025.
  59. Thanh, C.L., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
  60. Thanh, C.L., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427, https://doi.org/10.1016/j.tws.2019.106427.
  61. Thanh C.L., Hoang-Le, M., Ferreira, A.J.M. and Abdel Wahab, M. (2022a), "Small size-effect isogeometric analysis for linear and nonlinear responses of porous metal foam microplate", Compos. Struct., 285, 115189. https://doi.org/10.1016/j.compstruct.2022.115189.
  62. Thanh C.L., Nguyen, K.D., Lee, J., Rabczuk, R. and Nguyen- Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33, 065703. https://doi.org/10.1088/1361-6528/ac32f9.
  63. Thanh, C.L., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022c), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter, 631, 413726, https://doi.org/10.1016/j.physb.2022.413726.
  64. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
  65. Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025.
  66. Wu, H., Yang, J. and Kitipornchai, S. (2018), "Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates", Int. J. Mech. Sci., 135, 431-440. https://doi.org/10.1016/j.ijmecsci.2017.11.039.
  67. Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
  68. Zghal, S., Trabelsi, S., Frikha, A. and Dammak, F. (2021), "Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element", J. Thermal Stresses, 44(3), 315-341. https://doi.org/10.1080/01495739.2021.1871577.
  69. Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.