DOI QR코드

DOI QR Code

Comparative Study on the Evaluation of Liquefaction Resistance Ratio According to the Application of the Korean Standard for Cyclic Triaxial Strength Test

반복삼축강도시험의 KS 표준 제정에 따른 액상화 저항강도 평가 비교 연구

  • Lee, Seokhyung (Korea Institute of Civil Engrg. and Building Technology) ;
  • Han, Jin-Tae (Korea Institute of Civil Engrg. and Building Technology) ;
  • Park, Ka-hyun (Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Jongkwan (Korea Institute of Civil Engrg. and Building Technology)
  • Received : 2022.08.03
  • Accepted : 2022.08.11
  • Published : 2022.09.30

Abstract

The cyclic triaxial strength test is commonly applied as a laboratory test for evaluating the liquefaction resistance ratio. However, the test procedure was not standardized in South Korea until recently; thus, the test results could significantly differ depending on the performer and apparatus, even when identical soil is used. In this study, the American and Japanese standards for the cyclic triaxial strength test were analyzed and the Korean standard was developed considering domestic circumstances. To verify the effectiveness of the standardization of liquefaction laboratory tests, several cases of cyclic triaxial strength tests were conducted and analyzed (1) following the Korean standard and (2) without following any specific instructions for the test procedure. Under (1), the deviation of the liquefaction resistance ratio dramatically decreased.

흙의 액상화 저항강도를 실내실험을 통해 산출할 때 일반적으로 반복삼축강도시험장비가 사용된다. 하지만, 국내의 경우 반복삼축강도시험 방법이 표준화되어 있지 않아 기관별로 상이한 실험방법으로 실험을 수행하고 있어 동일한 시료임에도 큰 편차가 발생하는 문제가 있다. 본 연구에서는 미국과 일본의 반복삼축강도시험 기준을 분석하고 이를 바탕으로 국내실정을 고려한 반복삼축강도시험 방법의 표준화를 수행하였다. 액상화 실험방법의 표준화에 따른 효용성을 검토하기 위해 표준화되지 않았던 기존의 실험방법과 표준화된 실험방법 두 방식을 통해 동일 시료에 대한 액상화 저항강도 평가를 수행하였으며 이를 통해 표준화에 따른 실험결과의 편차를 분석하였다. 그 결과, 표준화된 방법을 통해 실험을 수행한 경우 기관별 차이가 크게 줄어드는 것을 확인 할 수 있었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었으며 이에 감사드립니다(과제번호: 22SCIP-C151438-04).

References

  1. Salman Rahimi, Clinton M. Wood, and Liam M. Wotherspoon (2020), "Influ ence of Soil Aging on SPT-Vs Correlation and Seismic Site Classification", Engineering Geology, Vol.272.
  2. Park, S., Nong, Z., Choi, S., and Moon, H. (2018), "Liquefaction Resistance of Pohang Sand", Journal of the Korean Geothecnical Society, Vol.34, No.9, pp.5-17.
  3. Hwang, B., Han, J., Kim, J., and Kwak, T. (2020), "Liquefaction Characteristic of Pohang Sand Based on Cyclic Triaxial Test", Journal of the Korean Geothecnical Society, Vol.36, No.9, pp.21-32.
  4. Kim, Y., Ko, K., Kim, B., Park, D., Kim, K., Han, J., and Kim, D. (2020), "Evaluation of Liquefaction Triggering for the Pohang Area Based on SPT and CPT Tests", Journal of the Korean Geothecnical Society, Vol.36, No.10, pp.57-71.
  5. Boulanger, R. W. and Idriss, I. M. (2004), "Evaluating the Potential for Liquefaction or Cyclic Failure of Silts and Clays", Center for Geotechnical Modeling Department of Civil & Environmental Engineering University of California Davis, California, .
  6. Lentini, Valentina and Castelli Francesco (2019), "Liquefaction Resistance of Sandy Soils from Undrained Cyclic Triaxial Tests", Geotechnical and Geological Engineering, Vol.37, pp.201-216. https://doi.org/10.1007/s10706-018-0603-y
  7. Ishihara, Kenji and Li sang-il (1972), "Liquefaction of Saturated Sand in Triaxial Torsion Shear Test", Soils and foundations, Vol.12, No.2, pp.19-39. https://doi.org/10.3208/sandf1972.12.19
  8. Polito, C. P. and Marin J. R. (2001), "Effects of Nonplastic Fines on the Liquefaction Resistance of Sands", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.5, pp.408-415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
  9. Kayabali, K. (1996), "Soil Liquefaction Evaluation Using Shear Wave Velocity", Engineering geology, Vol.44, No.1-4, pp.121-127. https://doi.org/10.1016/S0013-7952(96)00063-4
  10. Ji, Y., Seo, H., Kang, S., Kim, H., Kim, J., and Kim, B. (2022), "MASW-Based Shear Wave Velocities for Predicting Liquefaction-Induced Sand Boils Caused by the 2017 M5.4 Pohang, South Korea Earthquake", Journal of Geotechnical and Geoenvironmental Engineering, Vol.148, No.4.
  11. Shibata, T. and Teparaksa, W. (1988), "Evaluation of Liquefaction Potentials of Soils Using Cone Penetration Tests", Soils and foundations, Vol.28, No.2, pp.49-60. https://doi.org/10.3208/sandf1972.28.2_49
  12. Boulanger, R. W. and Idriss, I. M. (2016), "CPT-Based Liquefaction Triggering Procedure", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.2.
  13. American Society for Testing and Materials (2013), Standard test method for load controlled cyclic triaxial strength of soil (ASTM D5311).
  14. Japanese Geotechnical Society (2020), Method and interpretation for geotechnical material test.
  15. Idriss, I. and Boulanger, R.W. (2008), "Soil Liquefaction during Warthquakes", Earthquake Engineering Research Institute, Berkeley, CA..
  16. Korean standards (2021), Standard test method for cyclic triaxial strength for evaluating soil liquefaction (KS F 2498).
  17. Skempton, A. (1954), "The Pore-pressure Coefficients A and B", Geotechnique, Vol.4, No.4, pp.143-147, . https://doi.org/10.1680/geot.1954.4.4.143
  18. Koh, J.M. and Doh, D.H. (1991), "A Study on the Evaluation of Liquefaction of Sandy Soils by the Cyclic Triaxial Compression Test", Journal of the Korean Society of Agricultural Engineers, Vol.33, No.3, pp.51-62.
  19. Seo, H. and Kim, D. (2021), "Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test", The Journal of Engineering Geology, Vol.31, No.4, pp.493-506. https://doi.org/10.9720/KSEG.2021.4.493