DOI QR코드

DOI QR Code

Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in dogs

  • Wang, Shuang (College of Veterinary Medicine, Northeast Agricultural University) ;
  • Liu, XingYao (College of Veterinary Medicine, Northeast Agricultural University) ;
  • Liu, Yun (College of Veterinary Medicine, Northeast Agricultural University)
  • Received : 2022.03.10
  • Accepted : 2022.07.13
  • Published : 2022.09.30

Abstract

Background: The treatment of acute kidney injury (AKI), a common disease in dogs, is limited. Therefore, an effective method to prevent AKI in veterinary clinics is particularly crucial. Objectives: Hydrogen sulfide (H2S) is the third gaseous signal molecule involved in various physiological functions of the body. The present study investigated the effect of H2S on cisplatin-induced AKI and the involved mechanisms in dogs. Methods: Cisplatin-injected dogs developed AKI symptoms as indicated by renal dysfunction and pathological changes. In the H2S-treated group, 50 mM sodium hydrosulfide (NaHS) solution was injected at 1 mg/kg/h for 30 min before cisplatin injection. After 72 h, tissue and blood samples were collected immediately. We performed biochemical tests, optical microscopy studies, analysis with test kits, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. Results: The study results demonstrated that cisplatin injection increased necroptosis and regulated the corresponding protein expression of receptor interacting protein kinase (RIPK) 1, RIPK3, and poly ADP-ribose polymerase 1; furthermore, it activated the expressions of inflammatory factors, including tumor necrosis factor-alpha, nuclear factor kappa B, and interleukin-1β, in canine kidney tissues. Moreover, cisplatin triggered oxidative stress and affected energy metabolism. Conversely, an injection of NaHS solution considerably reduced the aforementioned changes. Conclusions: In conclusion, H2S protects the kidney from cisplatin-induced AKI through the mitigation of necroptosis and inflammation. These findings provide new and valuable clues for the treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics.

Keywords

Acknowledgement

The authors extend their sincere thanks to the members of the veterinary surgery laboratory at the College of Veterinary Medicine, Northeast Agricultural University for their help in collecting the samples.

References

  1. Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int Suppl. 2004;66(Suppl 91):S56-S61. https://doi.org/10.1111/j.1523-1755.2004.09109.x
  2. Vanmassenhove J, Kielstein J, Jorres A, Biesen WV. Management of patients at risk of acute kidney injury. Lancet. 2017;389(10084):2139-2151. https://doi.org/10.1016/S0140-6736(17)31329-6
  3. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813-818. https://doi.org/10.1001/jama.294.7.813
  4. Nielsen LK, Bracker K, Price LL. Administration of fenoldopam in critically ill small animal patients with acute kidney injury: 28 dogs and 34 cats (2008-2012). J Vet Emerg Crit Care (San Antonio). 2015;25(3):396-404. https://doi.org/10.1111/vec.12303
  5. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370(5):455-465. https://doi.org/10.1056/NEJMra1310050
  6. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513(7516):90-94. https://doi.org/10.1038/nature13608
  7. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2008;28(9):1564-1573. https://doi.org/10.1038/jcbfm.2008.44
  8. Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature. 2011;477(7364):330-334. https://doi.org/10.1038/nature10273
  9. Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 2014;21(2):270-277. https://doi.org/10.1038/cdd.2013.109
  10. Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788-794. https://doi.org/10.1002/hep.21357
  11. Wang R. Two's company, three's a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16(13):1792-1798. https://doi.org/10.1096/fj.02-0211hyp
  12. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol. 1992;32:109-134. https://doi.org/10.1146/annurev.pa.32.040192.000545
  13. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16(3):1066-1071. https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
  14. Song ZJ, Ng MY, Lee ZW, Dai W, Hagen T, Moore PK, et al. Hydrogen sulfide donors in research and drug development. Medchemcomm. 2014;5:557-570. https://doi.org/10.1039/C3MD00362K
  15. Mariggio MA, Minunno V, Riccardi S, Santacroce R, De Rinaldis P, Fumarulo R. Sulfide enhancement of PMN apoptosis. Immunopharmacol Immunotoxicol. 1998;20(3):399-408. https://doi.org/10.3109/08923979809034822
  16. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology. 2009;137(2):569-578, 578.e1. https://doi.org/10.1053/j.gastro.2009.04.012
  17. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, et al. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine. 2009;45(2):117-123. https://doi.org/10.1016/j.cyto.2008.11.009
  18. Kimura Y, Goto Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. Neurosci Res. 2011;71(Supplement):e88.
  19. Corsello T, Komaravelli N, Casola A. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants (Basel). 2018;7(10):129. https://doi.org/10.3390/antiox7100129
  20. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A. 2014;111(8):3182-3187. https://doi.org/10.1073/pnas.1321871111
  21. Daugaard G, Abildgaard U, Holstein-Rathlou NH, Amtorp O, Leyssac PP. Effect of cisplatin on renal haemodynamics and tubular function in the dog kidney. Int J Androl. 1987;10(1):347-351. https://doi.org/10.1111/j.1365-2605.1987.tb00201.x
  22. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313-321. https://doi.org/10.1038/nchembio.83
  23. Lin J, Li H, Yang M, Ren J, Huang Z, Han F, et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Reports. 2013;3(1):200-210. https://doi.org/10.1016/j.celrep.2012.12.012
  24. Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 2012;107(4):270. https://doi.org/10.1007/s00395-012-0270-8
  25. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 2011;18(4):656-665. https://doi.org/10.1038/cdd.2010.138
  26. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17(6):922-930. https://doi.org/10.1038/cdd.2009.184
  27. Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-Mcnulty B, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23(9):1565-1576. https://doi.org/10.1038/cdd.2016.46
  28. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, et al. A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol. 2015;26(11):2647-2658. https://doi.org/10.1681/ASN.2014080741
  29. Leu JG, Su WH, Chen YC, Liang YJ. Hydralazine attenuates renal inflammation in diabetic rats with ischemia/reperfusion acute kidney injury. Eur J Pharmacol. 2021;910:174468. https://doi.org/10.1016/j.ejphar.2021.174468
  30. Vural P, Degirmencioglu S, Saral NY, Akgul C. Tumor necrosis factor alpha (-308), interleukin-6 (-174) and interleukin-10 (-1082) gene polymorphisms in polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2010;150(1):61-65. https://doi.org/10.1016/j.ejogrb.2010.02.010
  31. Gong Q, Wang M, Jiang Y, Zha C, Yu D, Lei F, et al. The abrupt pathological deterioration of cisplatin- induced acute kidney injury: emerging of a critical time point. Pharmacol Res Perspect. 2021;9(6):e00895. https://doi.org/10.1002/prp2.895
  32. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O'Reilly L, et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity. 2012;36(2):215-227. https://doi.org/10.1016/j.immuni.2012.01.012
  33. Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 2014;41(4):567-578. https://doi.org/10.1016/j.immuni.2014.09.016
  34. Huang CY, Kuo WT, Huang YC, Lee TC, Yu LC. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mitochondrial superoxide in colorectal cancer cells. Cell Death Dis. 2013;4(5):e622. https://doi.org/10.1038/cddis.2013.149
  35. Martin-Sanchez D, Fontecha-Barriuso M, Carrasco S, Sanchez-Nino MD, Massenhausen AV, Linkermann A, et al. TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proc Natl Acad Sci U S A. 2018;115(16):4182-4187. https://doi.org/10.1073/pnas.1716578115
  36. Peltzer N, Walczak H. Cell death and inflammation - A vital but dangerous liaison. Trends Immunol. 2019;40(5):387-402. https://doi.org/10.1016/j.it.2019.03.006
  37. Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, et al. Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem Biol Interact. 2011;189(1-2):45-51. https://doi.org/10.1016/j.cbi.2010.10.014
  38. Waly MI, Ali BH, Al-Lawati I, Nemmar A. Protective effects of emodin against cisplatin-induced oxidative stress in cultured human kidney (HEK 293) cells. J Appl Toxicol. 2013;33(7):626-630. https://doi.org/10.1002/jat.1788
  39. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175-182. https://doi.org/10.1038/nm.4017
  40. Huang CY, Kuo WT, Huang CY, Lee T, Chen CT, Peng WH, et al. Distinct cytoprotective roles of pyruvate and ATP by glucose metabolism on epithelial necroptosis and crypt proliferation in ischemic gut. J Physiol. 2017;595(2):505-521. https://doi.org/10.1113/JP272208
  41. Chi Q, Wang D, Hu X, Li S, Li S. Hydrogen sulfide gas exposure induces necroptosis and promotes inflammation through the MAPK/NF- κB pathway in broiler spleen. Oxid Med Cell Longev. 2019;2019:8061823.
  42. Yang RL, Wang XT, Liu DW, Liu SB. Energy and oxygen metabolism disorder during septic acute kidney injury. Kidney Blood Press Res. 2014;39(4):240-251 https://doi.org/10.1159/000355801