DOI QR코드

DOI QR Code

Transcriptional Heterogeneity of Cellular Senescence in Cancer

  • Junaid, Muhammad (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Lee, Aejin (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Kim, Jaehyung (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Park, Tae Jun (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Lim, Su Bin (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
  • 투고 : 2022.03.06
  • 심사 : 2022.06.11
  • 발행 : 2022.09.30

초록

Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.

키워드

과제정보

The scientific illustrations in Figures 1 and 2 are credited to W.H. Cho at the Medical Information & Media Center, Ajou University School of Medicine. This work is supported by the National Research Foundation (NRF) of Korea (2020R1A6A1A03043539, 2020M3A9D8037604, and 2022R1C1C1004756).

참고문헌

  1. Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D., Kang, T.W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978-990. https://doi.org/10.1038/ncb2784
  2. Aramillo Irizar, P., Schauble, S., Esser, D., Groth, M., Frahm, C., Priebe, S., Baumgart, M., Hartmann, N., Marthandan, S., Menzel, U., et al. (2018). Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat. Commun. 9, 327.
  3. Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E., Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K., Kiseliovas, V., Setty, M., et al. (2018). Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293-1308.e36. https://doi.org/10.1016/j.cell.2018.05.060
  4. Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599.
  5. Ben-Porath, I. and Weinberg, R.A. (2004). When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13. https://doi.org/10.1172/JCI200420663
  6. Biavasco, R., Lettera, E., Giannetti, K., Gilioli, D., Beretta, S., Conti, A., Scala, S., Cesana, D., Gallina, P., Norelli, M., et al. (2021). Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nat. Commun. 12, 4559.
  7. Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565-1576. https://doi.org/10.1101/gad.343129.120
  8. Bochenek, M.L., Schutz, E., and Schafer, K. (2016). Endothelial cell senescence and thrombosis: ageing clots. Thromb. Res. 147, 36-45. https://doi.org/10.1016/j.thromres.2016.09.019
  9. Borghesan, M., Fafian-Labora, J., Eleftheriadou, O., Carpintero-Fernandez, P., Paez-Ribes, M., Vizcay-Barrena, G., Swisa, A., Kolodkin-Gal, D., Ximenez- Embun, P., Lowe, R., et al. (2019). Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956-3971.e6. https://doi.org/10.1016/j.celrep.2019.05.095
  10. Bray, F., Laversanne, M., Weiderpass, E., and Soerjomataram, I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029-3030. https://doi.org/10.1002/cncr.33587
  11. Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522. https://doi.org/10.1016/j.cell.2005.02.003
  12. Campisi, J. (2011). Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107-112. https://doi.org/10.1016/j.gde.2010.10.005
  13. Campisi, J. and d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740. https://doi.org/10.1038/nrm2233
  14. Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019). Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294-7305. https://doi.org/10.1093/nar/gkz555
  15. Chambers, C.R., Ritchie, S., Pereira, B.A., and Timpson, P. (2021). Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol. Oncol.15, 3242-3255. https://doi.org/10.1002/1878-0261.13042
  16. Chatsirisupachai, K., Lesluyes, T., Paraoan, L., Van Loo, P., and de Magalhaes, J.P. (2021). An integrative analysis of the age-associated multi- omic landscape across cancers. Nat. Commun. 12, 2345.
  17. Chen, P., Wang, Y., Li, J., Bo, X., Wang, J., Nan, L., Wang, C., Ba, Q., Liu, H., and Wang, H. (2021). Diversity and intratumoral heterogeneity in human gallbladder cancer progression revealed by single-cell RNA sequencing. Clin. Transl. Med. 11, e462.
  18. Choi, Y.W., Kim, Y.H., Oh, S.Y., Suh, K.W., Kim, Y.S., Lee, G.Y., Yoon, J.E., Park, S.S., Lee, Y.K., Park, Y.J., et al. (2021). Senescent tumor cells build a cytokine shield in colorectal cancer. Adv. Sci. (Weinh.) 8, 2002497.
  19. Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  20. Coppe, J.P., Kauser, K., Campisi, J., and Beausejour, C.M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568-29574. https://doi.org/10.1074/jbc.M603307200
  21. Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
  22. Cuollo, L., Antonangeli, F., Santoni, A., and Soriani, A. (2020). The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology (Basel) 9, 485.
  23. Davalos, A.R., Coppe, J.P., Campisi, J., and Desprez, P.Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273-283. https://doi.org/10.1007/s10555-010-9220-9
  24. Davis-Marcisak, E.F., Deshpande, A., Stein-O'Brien, G.L., Ho, W.J., Laheru, D., Jaffee, E.M., Fertig, E.J., and Kagohara, L.T. (2021). From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell 39, 1062-1080. https://doi.org/10.1016/j.ccell.2021.07.004
  25. Debatin, K.M. (2004). Apoptosis pathways in cancer and cancer therapy. Cancer Immunol. Immunother. 53, 153-159. https://doi.org/10.1007/s00262-003-0474-8
  26. Demaria, M., O'Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., et al. (2017). Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241
  27. Dimri, G.P. (2005). What has senescence got to do with cancer? Cancer Cell 7, 505-512. https://doi.org/10.1016/j.ccr.2005.05.025
  28. Dong, Y., Wang, Z., and Shi, Q. (2020). Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma. Proteomics 20, e1900224.
  29. Egeblad, M. and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174. https://doi.org/10.1038/nrc745
  30. Ewald, J.A., Desotelle, J.A., Wilding, G., and Jarrard, D.F. (2010). Therapy- induced senescence in cancer. J. Natl. Cancer Inst. 102, 1536-1546. https://doi.org/10.1093/jnci/djq364
  31. Faget, D.V., Ren, Q., and Stewart, S.A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439-453. https://doi.org/10.1038/s41568-019-0156-2
  32. Ferrucci, L. and Fabbri, E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505-522. https://doi.org/10.1038/s41569-018-0064-2
  33. Freund, A., Orjalo, A.V., Desprez, P.Y., and Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238-246. https://doi.org/10.1016/j.molmed.2010.03.003
  34. Fukushima, Y., Minato, N., and Hattori, M. (2018). The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm. Regen. 38, 24.
  35. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D.W., Fasano, A., Miller, G.W., et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822-1832. https://doi.org/10.1038/s41591-019-0675-0
  36. Gao, Y., Li, L., Amos, C.I., and Li, W. (2021). Analysis of alternative polyadenylation from single-cell RNA-seq using scDaPars reveals cell subpopulations invisible to gene expression. Genome Res. 31, 1856-1866. https://doi.org/10.1101/gr.271346.120
  37. Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular senescence: defining a path forward. Cell 179, 813-827. https://doi.org/10.1016/j.cell.2019.10.005
  38. Grainger, S., Traver, D., and Willert, K. (2018). Wnt signaling in hematological malignancies. Prog. Mol. Biol. Transl. Sci. 153, 321-341. https://doi.org/10.1016/bs.pmbts.2017.11.002
  39. Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  40. Hansel, C., Jendrossek, V., and Klein, D. (2020). Cellular senescence in the lung: the central role of senescent epithelial cells. Int. J. Mol. Sci. 21, 3279.
  41. Hassona, Y., Cirillo, N., Heesom, K., Parkinson, E.K., and Prime, S.S. (2014). Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br. J. Cancer 111, 1230-1237. https://doi.org/10.1038/bjc.2014.438
  42. Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652-2660.e4. https://doi.org/10.1016/j.cub.2017.07.033
  43. Herranz, N. and Gil, J. (2018). Mechanisms and functions of cellular senescence. J. Clin. Invest. 128, 1238-1246. https://doi.org/10.1172/JCI95148
  44. Heuberger, D.M. and Schuepbach, R.A. (2019). Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb. J. 17, 4.
  45. Hickson, L.J., Langhi Prata, L.G.P., Bobart, S.A., Evans, T.K., Giorgadze, N., Hashmi, S.K., Herrmann, S.M., Jensen, M.D., Jia, Q., Jordan, K.L., et al. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446-456. https://doi.org/10.1016/j.ebiom.2019.08.069
  46. Hwang, H.J., Lee, Y.R., Kang, D., Lee, H.C., Seo, H.R., Ryu, J.K., Kim, Y.N., Ko, Y.G., Park, H.J., and Lee, J.S. (2020). Endothelial cells under therapy- induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490, 100-110. https://doi.org/10.1016/j.canlet.2020.06.019
  47. Jochems, F., Thijssen, B., De Conti, G., Jansen, R., Pogacar, Z., Groot, K., Wang, L., Schepers, A., Wang, C., Jin, H., et al. (2021). The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441.
  48. Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551. https://doi.org/10.1038/nature10599
  49. Kieffer, Y., Hocine, H.R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B., Lameiras, S., Albergante, L., Bonneau, C., Guyard, A., et al. (2020). Single- cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330-1351. https://doi.org/10.1158/2159-8290.CD-19-1384
  50. Kim, S. and Kim, C. (2021). Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol. Cells 44, 136-145. https://doi.org/10.14348/molcells.2021.2239
  51. Kim, Y.H. and Park, T.J. (2019). Cellular senescence in cancer. BMB Rep. 52, 42-46. https://doi.org/10.5483/BMBRep.2019.52.1.295
  52. Kinker, G.S., Greenwald, A.C., Tal, R., Orlova, Z., Cuoco, M.S., McFarland, J.M., Warren, A., Rodman, C., Roth, J.A., Bender, S.A., et al. (2020). Pan- cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208-1218. https://doi.org/10.1038/s41588-020-00726-6
  53. Kirkland, J.L. and Tchkonia, T. (2017). Cellular senescence: a translational perspective. EBioMedicine 21, 21-28. https://doi.org/10.1016/j.ebiom.2017.04.013
  54. Kirschner, K., Rattanavirotkul, N., Quince, M.F., and Chandra, T. (2020). Functional heterogeneity in senescence. Biochem. Soc. Trans. 48, 765-773. https://doi.org/10.1042/BST20190109
  55. Kiss, T., Nyul-Toth, A., Balasubramanian, P., Tarantini, S., Ahire, C., DelFavero, J., Yabluchanskiy, A., Csipo, T., Farkas, E., Wiley, G., et al. (2020). Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42, 429-444. https://doi.org/10.1007/s11357-020-00177-1
  56. Kumar, V., Ramnarayanan, K., Sundar, R., Padmanabhan, N., Srivastava, S., Koiwa, M., Yasuda, T., Koh, V., Huang, K.K., Tay, S.T., et al. (2022). Single- cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670-691. https://doi.org/10.1158/2159-8290.CD-21-0683
  57. Kumari, R. and Jat, P. (2021). Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593.
  58. Laberge, R.M., Awad, P., Campisi, J., and Desprez, P.Y. (2012). Epithelial- mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. 5, 39-44. https://doi.org/10.1007/s12307-011-0069-4
  59. Lecot, P., Alimirah, F., Desprez, P.Y., Campisi, J., and Wiley, C. (2016). Context-dependent effects of cellular senescence in cancer development. Br. J. Cancer 114, 1180-1184. https://doi.org/10.1038/bjc.2016.115
  60. Lee, S. and Schmitt, C.A. (2019). The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94-101. https://doi.org/10.1038/s41556-018-0249-2
  61. Lei, Y., Tang, R., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., and Shi, S. (2021). Applications of single-cell sequencing in cancer research: progress and perspectives. J. Hematol. Oncol. 14, 91.
  62. Lian, J., Yue, Y., Yu, W., and Zhang, Y. (2020). Immunosenescence: a key player in cancer development. J. Hematol. Oncol. 13, 151.
  63. Lim, S.B., Di Lee, W., Vasudevan, J., Lim, W.T., and Lim, C.T. (2019a). Liquid biopsy: one cell at a time. NPJ Precis. Oncol. 3, 23.
  64. Lim, S.B., Lim, C.T., and Lim, W.T. (2019b). Single-cell analysis of circulating tumor cells: why heterogeneity matters. Cancers (Basel) 11, 1595.
  65. Lim, S.B., Yeo, T., Lee, W.D., Bhagat, A.A.S., Tan, S.J., Tan, D.S.W., Lim, W.T., and Lim, C.T. (2019c). Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. U. S. A. 116, 17957-17962. https://doi.org/10.1073/pnas.1907904116
  66. Liu, Y. and Cao, X. (2016). Characteristics and significance of the pre- metastatic niche. Cancer Cell 30, 668-681. https://doi.org/10.1016/j.ccell.2016.09.011
  67. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
  68. Luecken, M.D., Buttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colome-Tatche, M., et al. (2022). Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41-50. https://doi.org/10.1038/s41592-021-01336-8
  69. Marjanovic, N.D., Hofree, M., Chan, J.E., Canner, D., Wu, K., Trakala, M., Hartmann, G.G., Smith, O.C., Kim, J.Y., Evans, K.V., et al. (2020). Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229-246.e13. https://doi.org/10.1016/j.ccell.2020.06.012
  70. Massalha, H., Bahar Halpern, K., Abu-Gazala, S., Jana, T., Massasa, E.E., Moor, A.E., Buchauer, L., Rozenberg, M., Pikarsky, E., Amit, I., et al. (2020). A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682.
  71. Mellone, M., Hanley, C.J., Thirdborough, S., Mellows, T., Garcia, E., Woo, J., Tod, J., Frampton, S., Jenei, V., Moutasim, K.A., et al. (2016). Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis. Aging (Albany N.Y.) 9, 114-132.
  72. Mereu, E., Lafzi, A., Moutinho, C., Ziegenhain, C., McCarthy, D.J., Alvarez- Varela, A., Batlle, E., Sagar, Grun, D., Lau, J.K., et al. (2020). Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747-755. https://doi.org/10.1038/s41587-020-0469-4
  73. Milanovic, M., Fan, D.N.Y., Belenki, D., Dabritz, J.H.M., Zhao, Z., Yu, Y., Dorr, J.R., Dimitrova, L., Lenze, D., Monteiro Barbosa, I.A., et al. (2018). Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96-100. https://doi.org/10.1038/nature25167
  74. Muhl, L., Genove, G., Leptidis, S., Liu, J., He, L., Mocci, G., Sun, Y., Gustafsson, S., Buyandelger, B., Chivukula, I.V., et al. (2020). Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953.
  75. Nicos, M., Krawczyk, P., Crosetto, N., and Milanowski, J. (2020). The role of intratumor heterogeneity in the response of metastatic non-small cell lung cancer to immune checkpoint inhibitors. Front. Oncol. 10, 569202.
  76. Ortiz-Montero, P., Londono-Vallejo, A., and Vernot, J.P. (2017). Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross- reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 17.
  77. Ou, H.L., Hoffmann, R., Gonzalez-Lopez, C., Doherty, G.J., Korkola, J.E., and Munoz-Espin, D. (2021). Cellular senescence in cancer: from mechanisms to detection. Mol. Oncol. 15, 2634-2671. https://doi.org/10.1002/1878-0261.12807
  78. Ozcan, S., Alessio, N., Acar, M.B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U. (2016). Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany N.Y.) 8, 1316-1329.
  79. Panda, A.C., Abdelmohsen, K., and Gorospe, M. (2017). SASP regulation by noncoding RNA. Mech. Ageing Dev. 168, 37-43. https://doi.org/10.1016/j.mad.2017.05.004
  80. Park, S.S., Choi, Y.W., Kim, J.H., Kim, H.S., and Park, T.J. (2021). Senescent tumor cells: an overlooked adversary in the battle against cancer. Exp. Mol. Med. 53, 1834-1841. https://doi.org/10.1038/s12276-021-00717-5
  81. Peng, J., Sun, B.F., Chen, C.Y., Zhou, J.Y., Chen, Y.S., Chen, H., Liu, L., Huang, D., Jiang, J., Cui, G.S., et al. (2019). Single-cell RNA-seq highlights intra- tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725-738. https://doi.org/10.1038/s41422-019-0195-y
  82. Perez-Mancera, P.A., Young, A.R., and Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547-558. https://doi.org/10.1038/nrc3773
  83. Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., and Ohtsuki, M. (2016). Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868.
  84. Prasanna, P.G., Citrin, D.E., Hildesheim, J., Ahmed, M.M., Venkatachalam, S., Riscuta, G., Xi, D., Zheng, G., Deursen, J.V., Goronzy, J., et al. (2021). Therapy-induced senescence: opportunities to improve anticancer therapy. J. Natl. Cancer Inst. 113, 1285-1298. https://doi.org/10.1093/jnci/djab064
  85. Prasetyanti, P.R. and Medema, J.P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41.
  86. Prieto, L.I. and Baker, D.J. (2019). Cellular senescence and the immune system in cancer. Gerontology 65, 505-512. https://doi.org/10.1159/000500683
  87. Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., Wauters, E., Pomella, V., Verbandt, S., Busschaert, P., et al. (2020). A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745-762. https://doi.org/10.1038/s41422-020-0355-0
  88. Qian, M., Wang, D.C., Chen, H., and Cheng, Y. (2017). Detection of single cell heterogeneity in cancer. Semin. Cell Dev. Biol. 64, 143-149. https://doi.org/10.1016/j.semcdb.2016.09.003
  89. Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S., Fernandez, R., Akbarpour, M., Chen, C.I., Ren, Z., et al. (2019). Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517-1536. https://doi.org/10.1164/rccm.201712-2410OC
  90. Ribas, A. and Wolchok, J.D. (2018). Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355. https://doi.org/10.1126/science.aar4060
  91. Ruscetti, M., Morris, J.P., 4th, Mezzadra, R., Russell, J., Leibold, J., Romesser, P.B., Simon, J., Kulick, A., Ho, Y.J., Fennell, M., et al. (2020). Senescence- induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424-441.e21. https://doi.org/10.1016/j.cell.2020.03.008
  92. Saleh, T., Bloukh, S., Carpenter, V.J., Alwohoush, E., Bakeer, J., Darwish, S., Azab, B., and Gewirtz, D.A. (2020). Therapy-induced senescence: an "old" friend becomes the enemy. Cancers (Basel) 12, 822.
  93. Saul, D. and Kosinsky, R.L. (2021). Single-cell transcriptomics reveals the expression of aging- and senescence-associated genes in distinct cancer cell populations. Cells 10, 3126.
  94. Schaum, N., Lehallier, B., Hahn, O., Palovics, R., Hosseinzadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., Zardeneta, M.E., et al. (2020). Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602. https://doi.org/10.1038/s41586-020-2499-y
  95. Schosserer, M., Grillari, J., and Breitenbach, M. (2017). The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front. Oncol. 7, 278.
  96. Sikora, E., Bielak-Zmijewska, A., and Mosieniak, G. (2021). A common signature of cellular senescence; does it exist? Ageing Res. Rev. 71, 101458.
  97. Sole-Boldo, L., Raddatz, G., Schutz, S., Mallm, J.P., Rippe, K., Lonsdorf, A.S., Rodriguez-Paredes, M., and Lyko, F. (2020). Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 3, 188.
  98. Storz, P. and Crawford, H.C. (2020). Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology 158, 2072-2081. https://doi.org/10.1053/j.gastro.2020.02.059
  99. Sturmlechner, I., Zhang, C., Sine, C.C., van Deursen, E.J., Jeganathan, K.B., Hamada, N., Grasic, J., Friedman, D., Stutchman, J.T., Can, I., et al. (2021). p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 374, eabb3420.
  100. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  101. Tabula Muris Consortium (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590-595. https://doi.org/10.1038/s41586-020-2496-1
  102. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole- transcriptome analysis of a single cell. Nat. Methods 6, 377-382. https://doi.org/10.1038/nmeth.1315
  103. Tsai, K.K., Chuang, E.Y., Little, J.B., and Yuan, Z.M. (2005). Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 65, 6734-6744. https://doi.org/10.1158/0008-5472.CAN-05-0703
  104. Ungvari, Z., Valcarcel-Ares, M.N., Tarantini, S., Yabluchanskiy, A., Fulop, G.A., Kiss, T., and Csiszar, A. (2017). Connective tissue growth factor (CTGF) in age-related vascular pathologies. Geroscience 39, 491-498. https://doi.org/10.1007/s11357-017-9995-5
  105. Uyar, B., Palmer, D., Kowald, A., Murua Escobar, H., Barrantes, I., Moller, S., Akalin, A., and Fuellen, G. (2020). Single-cell analyses of aging, inflammation and senescence. Ageing Res. Rev. 64, 101156.
  106. van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193
  107. Wang, Y., Liu, Y., Zhu, C., Zhang, X., and Li, G. (2022). Development of an aging-related gene signature for predicting prognosis, immunotherapy, and chemotherapy benefits in rectal cancer. Front. Mol. Biosci. 8, 775700.
  108. Wiley, C.D., Flynn, J.M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., Unger, M.A., Vijg, J., Melov, S., and Campisi, J. (2017). Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043-1050. https://doi.org/10.1111/acel.12632
  109. Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., George, J., Danson, S., and Kirkland, J.L. (2020). Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel) 12, 2134.
  110. Xiao, Z., Dai, Z., and Locasale, J.W. (2019). Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763.
  111. Ximerakis, M., Lipnick, S.L., Innes, B.T., Simmons, S.K., Adiconis, X., Dionne, D., Mayweather, B.A., Nguyen, L., Niziolek, Z., Ozek, C., et al. (2019). Single- cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696-1708. https://doi.org/10.1038/s41593-019-0491-3
  112. Yang, F., Tuxhorn, J.A., Ressler, S.J., McAlhany, S.J., Dang, T.D., and Rowley, D.R. (2005). Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65, 8887-8895. https://doi.org/10.1158/0008-5472.CAN-05-1702
  113. Zappia, L. and Theis, F.J. (2021). Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol. 22, 301.
  114. Zhai, W.Y., Duan, F.F., Chen, S., Wang, J.Y., Zhao, Z.R., Wang, Y.Z., Rao, B.Y., Lin, Y.B., and Long, H. (2022). An aging-related gene signature-based model for risk stratification and prognosis prediction in lung squamous carcinoma. Front. Cell Dev. Biol. 10, 770550.
  115. Zhang, P., Yang, M., Zhang, Y., Xiao, S., Lai, X., Tan, A., Du, S., and Li, S. (2019). Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep. 27, 1934-1947.e5. https://doi.org/10.1016/j.celrep.2019.04.052
  116. Zhang, Y., Ma, Y., Huang, Y., Zhang, Y., Jiang, Q., Zhou, M., and Su, J. (2020). Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Comput. Struct. Biotechnol. J. 18, 2953-2961. https://doi.org/10.1016/j.csbj.2020.10.007
  117. Zhang, Y., Yan, Y., Ning, N., Shen, Z., and Ye, Y. (2021). A signature of 24 agingrelated gene pairs predict overall survival in gastric cancer. Biomed. Eng. Online 20, 35.
  118. Zhou, Y., Liu, S., Liu, C., Yang, J., Lin, Q., Zheng, S., Chen, C., Zhou, Q., and Chen, R. (2021). Single-cell RNA sequencing reveals spatiotemporal heterogeneity and malignant progression in pancreatic neuroendocrine tumor. Int. J. Biol. Sci. 17, 3760-3775. https://doi.org/10.7150/ijbs.61717
  119. Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I., and Enard, W. (2017). Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643.e4. https://doi.org/10.1016/j.molcel.2017.01.023