DOI QR코드

DOI QR Code

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan (Department of Biological Sciences, Chungnam National University) ;
  • Koh, Dahyeon (Department of Biological Sciences, Chungnam National University) ;
  • Jeon, Hyeong Bin (Department of Biological Sciences, Chungnam National University) ;
  • Kim, Kyoung Mi (Department of Biological Sciences, Chungnam National University)
  • 투고 : 2022.04.08
  • 심사 : 2022.06.18
  • 발행 : 2022.09.30

초록

Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

키워드

과제정보

This work was supported by the research fund of Chungnam National University, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1C1C1010869).

참고문헌

  1. Al Suraih, M.S., Trussoni, C.E., Splinter, P.L., LaRusso, N.F., and O'Hara, S.P. (2020). Senescent cholangiocytes release extracellular vesicles that alter target cell phenotype via the epidermal growth factor receptor. Liver Int. 40, 2455-2468. https://doi.org/10.1111/liv.14569
  2. Alique, M., Ruiz-Torres, M.P., Bodega, G., Noci, M.V., Troyano, N., Bohorquez, L., Luna, C., Luque, R., Carmona, A., Carracedo, J., et al. (2017). Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany N.Y.) 9, 778-789.
  3. Borges, F.T., Reis, L.A., and Schor, N. (2013). Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz. J. Med. Biol. Res. 46, 824-830. https://doi.org/10.1590/1414-431X20132964
  4. Borghesan, M., Fafian-Labora, J., Eleftheriadou, O., Carpintero-Fernandez, P., Paez-Ribes, M., Vizcay-Barrena, G., Swisa, A., Kolodkin-Gal, D., Ximenez-Embun, P., Lowe, R., et al. (2019). Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956-3971.e6. https://doi.org/10.1016/j.celrep.2019.05.095
  5. Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019). Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294-7305. https://doi.org/10.1093/nar/gkz555
  6. Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424-1435. https://doi.org/10.1038/nm.4000
  7. Choi, E.J., Kil, I.S., and Cho, E.G. (2020). Extracellular vesicles derived from senescent fibroblasts attenuate the dermal effect on keratinocyte differentiation. Int. J. Mol. Sci. 21, 1022.
  8. Davis, C., Dukes, A., Drewry, M., Helwa, I., Johnson, M.H., Isales, C.M., Hill, W.D., Liu, Y., Shi, X., Fulzele, S., et al. (2017). MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng. Part A 23, 1231-1240. https://doi.org/10.1089/ten.tea.2016.0525
  9. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  10. Dong, C., Zhou, Q., Fu, T., Zhao, R., Yang, J., Kong, X., Zhang, Z., Sun, C., Bao, Y., Ge, X., et al. (2019). Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. Biomed Res. Int. 2019, 6071308.
  11. Dorronsoro, A., Santiago, F.E., Grassi, D., Zhang, T., Lai, R.C., McGowan, S.J., Angelini, L., Lavasani, M., Corbo, L., Lu, A., et al. (2021). Mesenchymal stem cell-derived extracellular vesicles reduce senescence and extend health span in mouse models of aging. Aging Cell 20, e13337.
  12. Doyle, L.M. and Wang, M.Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727.
  13. Fabian, M.R. and Sonenberg, N. (2012). The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586-593. https://doi.org/10.1038/nsmb.2296
  14. Fafian-Labora, J.A., Rodriguez-Navarro, J.A., and O'Loghlen, A. (2020). Small extracellular vesicles have GST activity and ameliorate senescence-related tissue damage. Cell Metab. 32, 71-86.e5. https://doi.org/10.1016/j.cmet.2020.06.004
  15. Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi, D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422.
  16. Guttman, M., Russell, P., Ingolia, N.T., Weissman, J.S., and Lander, E.S. (2013). Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240-251. https://doi.org/10.1016/j.cell.2013.06.009
  17. Han, L., Long, Q., Li, S., Xu, Q., Zhang, B., Dou, X., Qian, M., Jiramongkol, Y., Guo, J., Cao, L., et al. (2020). Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 80, 3383-3398.
  18. Hayflick, L. and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  19. Hernandez-Segura, A., Nehme, J., and Demaria, M. (2018). Hallmarks of cellular senescence. Trends Cell Biol. 28, 436-453. https://doi.org/10.1016/j.tcb.2018.02.001
  20. Hsiao, K.Y., Sun, H.S., and Tsai, S.J. (2017). Circular RNA - new member of noncoding RNA with novel functions. Exp. Biol. Med. (Maywood) 242, 1136-1141. https://doi.org/10.1177/1535370217708978
  21. Jakhar, R. and Crasta, K. (2019). Exosomes as emerging pro-tumorigenic mediators of the senescence-associated secretory phenotype. Int. J. Mol. Sci. 20, 2547.
  22. Khayrullin, A., Krishnan, P., Martinez-Nater, L., Mendhe, B., Fulzele, S., Liu, Y., Mattison, J.A., and Hamrick, M.W. (2019). Very long-chain C24:1 ceramide is increased in serum extracellular vesicles with aging and can induce senescence in bone-derived mesenchymal stem cells. Cells 8, 37.
  23. Kim, K.M., Noh, J.H., Bodogai, M., Martindale, J.L., Pandey, P.R., Yang, X., Biragyn, A., Abdelmohsen, K., and Gorospe, M. (2018). SCAMP4 enhances the senescent cell secretome. Genes Dev. 32, 909-914. https://doi.org/10.1101/gad.313270.118
  24. Kim, K.M., Noh, J.H., Bodogai, M., Martindale, J.L., Yang, X., Indig, F.E., Basu, S.K., Ohnuma, K., Morimoto, C., Johnson, P.F., et al. (2017). Identification of senescent cell surface targetable protein DPP4. Genes Dev. 31, 1529-1534. https://doi.org/10.1101/gad.302570.117
  25. Kim, S. and Kim, C. (2021). Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol. Cells 44, 136-145. https://doi.org/10.14348/molcells.2021.2239
  26. Kuilman, T. and Peeper, D.S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81-94. https://doi.org/10.1038/nrc2560
  27. Lu, Q., Qin, H., Tan, H., Wei, C., Yang, X., He, J., Liang, W., and Li, J. (2021). Senescence osteoblast-derived exosome-mediated miR-139-5p regulates endothelial cell functions. Biomed Res. Int. 2021, 5576023.
  28. Malaquin, N., Martinez, A., and Rodier, F. (2016). Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp. Gerontol. 82, 39-49. https://doi.org/10.1016/j.exger.2016.05.010
  29. Mensa, E., Guescini, M., Giuliani, A., Bacalini, M.G., Ramini, D., Corleone, G., Ferracin, M., Fulgenzi, G., Graciotti, L., Prattichizzo, F., et al. (2020). Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J. Extracell. Vesicles 9, 1725285.
  30. Misawa, T., Tanaka, Y., Okada, R., and Takahashi, A. (2020). Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr. Gerontol. Int. 20, 539-546. https://doi.org/10.1111/ggi.13928
  31. Miyazoe, Y., Miuma, S., Miyaaki, H., Kanda, Y., Nakashiki, S., Sasaki, R., Haraguchi, M., Shibata, H., Honda, T., Taura, N., et al. (2020). Extracellular vesicles from senescent hepatic stellate cells promote cell viability of hepatoma cells through increasing EGF secretion from differentiated THP-1 cells. Biomed. Rep. 12, 163-170.
  32. Munk, R., Anerillas, C., Rossi, M., Tsitsipatis, D., Martindale, J.L., Herman, A.B., Yang, J.H., Roberts, J.A., Varma, V.R., Pandey, P.R., et al. (2021). Acid ceramidase promotes senescent cell survival. Aging (Albany N.Y.) 13, 15750-15769.
  33. Noh, J.H., Kim, K.M., McClusky, W.G., Abdelmohsen, K., and Gorospe, M. (2018). Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA 9, e1471.
  34. Ogrodnik, M., Zhu, Y., Langhi, L.G.P., Tchkonia, T., Kruger, P., Fielder, E., Victorelli, S., Ruswhandi, R.A., Giorgadze, N., Pirtskhalava, T., et al. (2019). Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1233.
  35. Oh, M., Lee, J., Kim, Y.J., Rhee, W.J., and Park, J.H. (2018). Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 19, 1715.
  36. Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383. https://doi.org/10.1083/jcb.201211138
  37. Reiner, A.T., Witwer, K.W., van Balkom, B.W.M., de Beer, J., Brodie, C., Corteling, R.L., Gabrielsson, S., Gimona, M., Ibrahim, A.G., de Kleijn, D., et al. (2017). Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 6, 1730-1739. https://doi.org/10.1002/sctm.17-0055
  38. Riquelme, J.A., Takov, K., Santiago-Fernandez, C., Rossello, X., Lavandero, S., Yellon, D.M., and Davidson, S.M. (2020). Increased production of functional small extracellular vesicles in senescent endothelial cells. J. Cell. Mol. Med. 24, 4871-4876. https://doi.org/10.1111/jcmm.15047
  39. Shi, H.Z., Zeng, J.C., Shi, S.H., Giannakopoulos, H., Zhang, Q.Z., and Le, A.D. (2021). Extracellular vesicles of GMSCs alleviate aging-related cell senescence. J. Dent. Res. 100, 283-292. https://doi.org/10.1177/0022034520962463
  40. Sun, L., Zhu, W., Zhao, P., Zhang, J., Lu, Y., Zhu, Y., Zhao, W., Liu, Y., Chen, Q., and Zhang, F. (2020). Down-regulated exosomal MicroRNA-221-3p derived from senescent mesenchymal stem cells impairs heart repair. Front. Cell Dev. Biol. 8, 263.
  41. Takasugi, M., Okada, R., Takahashi, A., Virya Chen, D., Watanabe, S., and Hara, E. (2017). Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729.
  42. Tofino-Vian, M., Guillen, M.I., Perez Del Caz, M.D., Castejon, M.A., and Alcaraz, M.J. (2017). Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid. Med. Cell. Longev. 2017, 7197598.
  43. van Balkom, B.W., de Jong, O.G., Smits, M., Brummelman, J., den Ouden, K., de Bree, P.M., van Eijndhoven, M.A., Pegtel, D.M., Stoorvogel, W., Wurdinger, T., et al. (2013). Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121, 3997-4006, S1-S15.
  44. Wang, S., Zhan, J., Lin, X., Wang, Y., Wang, Y., and Liu, Y. (2020). CircRNA-0077930 from hyperglycaemia-stimulated vascular endothelial cell exosomes regulates senescence in vascular smooth muscle cells. Cell Biochem. Funct. 38, 1056-1068. https://doi.org/10.1002/cbf.3543
  45. Weilner, S., Keider, V., Winter, M., Harreither, E., Salzer, B., Weiss, F., Schraml, E., Messner, P., Pietschmann, P., Hildner, F., et al. (2016). Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany N.Y.) 8, 16-33.
  46. Wiklander, O.P.B., Brennan, M.A., Lotvall, J., Breakefield, X.O., and El Andaloussi, S. (2019). Advances in therapeutic applications of extracellular vesicles. Sci. Transl. Med. 11, eaav8521.
  47. Wong, P.F., Tong, K.L., Jamal, J., Khor, E.S., Lai, S.L., and Mustafa, M.R. (2019). Senescent HUVECs-secreted exosomes trigger endothelial barrier dysfunction in young endothelial cells. EXCLI J. 18, 764-776.
  48. Xia, W., Chen, H., Xie, C., and Hou, M. (2020). Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging (Albany N.Y.) 12, 8241-8260.
  49. Yanez-Mo, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borras, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066.
  50. Yang, J., Yu, X.F., Li, Y.Y., Xue, F.T., and Zhang, S. (2019). Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence. Eur. Rev. Med. Pharmacol. Sci. 23, 3993-4001.
  51. Yoshida, M., Satoh, A., Lin, J.B., Mills, K.F., Sasaki, Y., Rensing, N., Wong, M., Apte, R.S., and Imai, S.I. (2019). Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329-342.e5. https://doi.org/10.1016/j.cmet.2019.05.015
  52. Young, A.R. and Narita, M. (2009). SASP reflects senescence. EMBO Rep.10, 228-230. https://doi.org/10.1038/embor.2009.22
  53. Yuan, D., Luo, J., Sun, Y., Hao, L., Zheng, J., and Yang, Z. (2021). PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell. Signal. 85, 110030.
  54. Zaborowski, M.P., Balaj, L., Breakefield, X.O., and Lai, C.P. (2015). Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65, 783-797. https://doi.org/10.1093/biosci/biv084
  55. Zhang, N., Zhu, J., Ma, Q., Zhao, Y., Wang, Y., Hu, X., Chen, J., Zhu, W., Han, Z., and Yu, H. (2020). Exosomes derived from human umbilical cord MSCs rejuvenate aged MSCs and enhance their functions for myocardial repair. Stem Cell Res. Ther. 11, 273.
  56. Zhang, Y., Kim, M.S., Jia, B., Yan, J., Zuniga-Hertz, J.P., Han, C., and Cai, D. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52-57. https://doi.org/10.1038/nature23282
  57. Zhang, Y., Xu, J., Liu, S., Lim, M., Zhao, S., Cui, K., Zhang, K., Wang, L., Ji, Q., Han, Z., et al. (2019). Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics 9, 6976-6990. https://doi.org/10.7150/thno.35305
  58. Zhao, X., Liu, Y., Jia, P., Cheng, H., Wang, C., Chen, S., Huang, H., Han, Z., Han, Z.C., Marycz, K., et al. (2021). Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res. Ther. 12, 196.
  59. Zhu, B., Zhang, L., Liang, C., Liu, B., Pan, X., Wang, Y., Zhang, Y., Zhang, Y., Xie, W., Yan, B., et al. (2019). Stem cell-derived exosomes prevent aging-induced cardiac dysfunction through a novel exosome/lncRNA MALAT1/NF-kappaB/TNF-alpha signaling pathway. Oxid. Med. Cell. Longev. 2019, 9739258.
  60. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., Ikeno, Y., Hubbard, G.B., Lenburg, M., et al. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644-658. https://doi.org/10.1111/acel.12344
  61. Zhuang, L., Xia, W., Chen, D., Ye, Y., Hu, T., Li, S., and Hou, M. (2020). Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J. Nanobiotechnology 18, 157.