DOI QR코드

DOI QR Code

Effects of Saccharomycopsis fibuligera Fermentation on the Antioxidant and Anti-inflammatory Activity of Kerria japonica Flower Extract

Saccharomycopsis fibuligera로 발효된 황매화 추출물의 항산화 및 항염효과

  • Park, Sang-Nam (Department of Clinical Laboratory Science, Kyungdong University) ;
  • Lee, Ok Hee (Department of Health Management, Kyungdong University)
  • 박상남 (경동대학교 임상병리학과) ;
  • 이옥희 (경동대학교 보건관리학과)
  • Received : 2022.07.18
  • Accepted : 2022.07.30
  • Published : 2022.09.30

Abstract

The effect of Saccharomycopsis fibuligera fermentation on the antioxidant and anti-inflammatory activity of Kerria japonica (K. japonica) extracts was studied. First, the antioxidant activity of the fermented extract was measured using the 2,2-diphenyl1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzthiazoline 6-sulfonic acid (ABTS) methods. Also, the quantification of polyphenols and flavonoids, which are representative components with antioxidant activity, was performed. The results of the DPPH and ABTS assays showed an increase in the antioxidant activity by 14.39% and 21.74%, respectively, due to fermentation. The polyphenol concentration increased by 10.5%, and the flavonoid concentration increased by 100.0%. In the cell experiment, a cytotoxicity test and a nitric oxide (NO) production inhibitory test were performed using RAW 264.7 cells. Both the control group and the fermentation group showed no cytotoxicity. In the NO production inhibition experiment, the fermentation group showed a 6.85% higher inhibition of NO production compared to the control group. When the inhibitory effects of the extracts on inflammatory cytokine production were assessed, the fermentation group showed 12.4% and 23.5% higher inhibition of interleukin (IL)-1β and IL-6 production, respectively, compared to the control group. In conclusion, due to its potential for inhibiting NO and inflammatory cytokine production, fermented K. japonica extracts could be considered a source of anti-inflammatory compounds.

발효된 황매화의 상업적 사용 가능성을 확인하기 위하여 항산화능 실험과 세포 독성, 항염능 실험을 실시하였다. 항산화능 실험에는 DPPH 실험, ABTS 실험, polyphenol 농도 측정, flavonoid 농도 측정을 실시하였다. polyphenol과 flavonoid 농도 측정에서는 발효군이 대조군에 비해 높은 농도를 나타내어, 발효를 통해 추출물의 유효성분 및 추출 수율을 높인다는 것을 확인하였다. DPPH, ABTS에서는 대조군에 비해 발효군의 항산화능이 높은 것을 확인하였다. 이는 S. fibuligera가 발효 과정에서 생산해 낸 효소에 의해 황매화의 세포벽 연화와 유기산과 에탄올 생성에 의한 추출 수율 증가에 의한 요인으로 생각된다. 항염능 실험에서는 세포 독성과 항염능을 알아보았다. 세포독성의 경우 대조군과 발효군 모두 낮은 세포독성을 보였으며, 염증 전달 물질인 NO 생성 억제능의 경우 발효군이 대조군에 비해 통계적으로 유의한 수준의 항염능 증가를 보였다. 염증성 cytokine인 IL-1β, IL-6의 농도를 측정한 결과 200 ㎍/mL 농도에서 각각 48.1±6.2%, 30.4±2.2%의 억제효과를 나타내었다. 이를 통해 발효 황매화가 염증 억제를 위한 물질로서 사용가능함을 보였다.

Keywords

References

  1. Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev. 2008;129:467-474. https://doi.org/10.1016/j.mad.2008.04.001
  2. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75-95. https://doi.org/10.1038/s41580-020-00314-w
  3. Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sc. 2016;3:300-324. https://doi.org/10.3934/molsci.2016.3.300
  4. Davalli P, Mitic T, Caporali A, Lauriola A, D'Arca, D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:1-18. https://doi.org/10.1155/2016/3565127
  5. Lagouge M, Larsson NG. The role of mitochondrial DNA mutations and free radicals in disease and ageing. JIM. 2013;273:529-543. https://doi.org/10.1111/joim.12055
  6. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003; 17:663-669. https://doi.org/10.1046/j.1468-3083.2003.00751.x
  7. Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013;1:304-312. https://doi.org/10.1016/j.redox.2013.04.005
  8. Lee YI, Choi S, Roh WS, Lee JH, Kim TG. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci. 2021;22:3849. https://doi.org/10.3390/ijms22083849
  9. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576-590. https://doi.org/10.1038/s41574-018-0059-4
  10. Minciullo PL, Catalano A, Mandraffino G, Casciaro M, Crucitti A, Maltese G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp. 2016;64:111-126. https://doi.org/10.1007/s00005-015-0377-3
  11. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol cell. 2014;54:281-288. https://doi.org/10.1016/j.molcel.2014.03.030
  12. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Resh. 2020;13:1057. https://doi.org/10.2147/JIR.S275595
  13. Evans JA, Johnson EJ. The role of phytonutrients in skin health. Nutrients. 2010;2:903-928. https://doi.org/10.3390/nu2080903
  14. Wu J, Feng JQ, Zhao WM. A new lignan and anti-inflammatory flavonoids from Kerria japonica. J Asian Nat Prod Res. 2008;10: 435-438. https://doi.org/10.1080/10286020801892375
  15. Rekha CR, Vijayalakshmi G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol. 2010;109:1198-1208. https://doi.org/10.1111/j.1365-2672.2010.04745.x
  16. Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnol Adv. 2015;33:214-223. https://doi.org/10.1016/j.biotechadv.2014.10.012
  17. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv. 2009;27:423-431. https://doi.org/10.1016/j.biotechadv.2009.03.003
  18. Pekal A, Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014;7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
  19. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. https://doi.org/10.1038/1811199a0
  20. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Chen Z, Bertin R, Froldi G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013;138:414-420. https://doi.org/10.1016/j.foodchem.2012.11.001
  22. Choi DH, Park EH, Kim MD. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Microbiol Biotechnol Lett. 2014;42:407-412. https://doi.org/10.4014/kjmb.1409.09006
  23. Martillanes S, Ayuso-Yuste MC, Bernalte MJ, Gil MV, Delgado-Adamez J. Cellulase-assisted extraction of phenolic compounds from rice bran (Oryza sativa L.): process optimization and characterization. J Food Meas Charact. 2021;15:1719-1726. https://doi.org/10.1007/s11694-020-00773-x
  24. Huang D, Zhou X, Si J, Gong X, Wang S. Studies on cellu- lase-ultrasonic assisted extraction technology for flavonoids from Illicium verum residues. Chem Cent J. 2016;10:1-9. https://doi.org/10.1186/s13065-016-0202-z
  25. Hsieh Y, Chiu MC, Chou JY. Efficacy of the Kombucha beverage derived from green, black, and Pu'er teas on chemical profile and antioxidant activity. J Food Qual. 2021:1-9. https://doi.org/10.1155/2021/1735959
  26. Adebo OA, Gabriela Medina-Meza I. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: a mini review. Molecules. 2020;25:927. https://doi.org/10.3390/molecules25040927
  27. Zhang H, Hassan YI, Liu R, Mats L, Yang C, Liu C, et al. Molecular mechanisms underlying the absorption of aglycone and glycosidic flavonoids in a Caco-2 BBe1 cell model. ACS Omega. 2020;5:10782-10793. https://doi.org/10.1021/acsomega.0c00379
  28. Rha CS, Jeong HW, Park S, Lee S, Jung YS, Kim DO. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants (Basel). 2019;8:278. https://doi.org/10.3390/antiox8080278