DOI QR코드

DOI QR Code

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN (DEPARTMENT OF MATHEMATICS, HANKUK UNIVERSITY OF FOREIGN STUDIES)
  • Received : 2022.07.30
  • Accepted : 2022.09.23
  • Published : 2022.09.25

Abstract

In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

Keywords

Acknowledgement

The author's work was supported in part by the Hankuk University of Foreign Studies Research Fund and in part by the National Research Foundation of Korea (2021R1F1A1048111).

References

  1. R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, Statistics of speckle in ultrasound B-scans, IEEE Trans. Sonics and Ultrason., 30 (1983), 156-163. https://doi.org/10.1109/T-SU.1983.31404
  2. J. M. Schmitt, S. Xiang, and K. M. Yung, Speckle in optical coherence tomography, Journal of biomedical optics, 4 (1999), 95-105. https://doi.org/10.1117/1.429925
  3. J.-S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Trans. Geosci. Remote Sens., 32 (1994), 1017-1028. https://doi.org/10.1109/36.312890
  4. J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1980), 165-168. https://doi.org/10.1109/TPAMI.1980.4766994
  5. V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (1982), 157-166. https://doi.org/10.1109/TPAMI.1982.4767223
  6. Y. Yu and S. T. Acton, Speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 11 (2002), 1260- 1270. https://doi.org/10.1109/TIP.2002.804276
  7. K. Krissian, C.-F. Westin, R. Kikinis, and K. G. Vosburgh, Oriented speckle reducing anisotropic diffusion, IEEE Trans. Image Process., 16 (2007), 1412-1424. https://doi.org/10.1109/TIP.2007.891803
  8. G. Aubert and J.-F. Aujol. A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946. https://doi.org/10.1137/060671814
  9. Z. Li, Y. Lou, and T. Zeng, Variational multiplicative noise removal by DC programming, J. Sci. Comput., 68 (2016), 1200-1216. https://doi.org/10.1007/s10915-016-0175-z
  10. J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM J. Imaging Sci., 1 (2008), 294-321. https://doi.org/10.1137/070689954
  11. G. Steidl and T. Teuber, Removing multiplicative noise by Douglas-Rachford splitting methods, J. Math. Imag- ing Vis., 36 (2010), 168-184. https://doi.org/10.1007/s10851-009-0179-5
  12. Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imaging Sci., 6 (2013), 1598-1625. https://doi.org/10.1137/120870621
  13. J. Lu, L. Shen, C. Xu, and Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518-539. https://doi.org/10.1016/j.acha.2015.10.003
  14. S. Yun and H. Woo, A new multiplicative denoising variational model based on m-th root transformation, IEEE Trans. Image Process., 21 (2012), 2523-2533. https://doi.org/10.1109/TIP.2012.2185942
  15. M. Kang, S. Yun, and H. Woo, Two-level convex relaxed variational model for multiplicative denoising, SIAM J. Imaging Sci., 6 (2013), 875-903. https://doi.org/10.1137/11086077X
  16. H. Na, M. Kang, M. Jung, and M. Kang, An exp model with spatially adaptive regularization parameters for multiplicative noise removal, J. Sci. Comput., 75 (2018), 478-509. https://doi.org/10.1007/s10915-017-0550-4
  17. H. Na, M. Kang, M. Jung, and M. Kang, Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters, Inverse Probl. Imaging, 13 (2019), 117-147. https://doi.org/10.3934/ipi.2019007
  18. S. Parrilli, M. Poderico, C. V. Angelino, and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50 (2012), 606-616. https://doi.org/10.1109/TGRS.2011.2161586
  19. L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
  20. L. Rudin, P.-L. Lions, and S. Osher, Multiplicative denoising and deblurring: theory and algorithms, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, New York, 2003.
  21. M. Hintermuller and A. Langer, Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1-L2 data-fidelity in image processing, SIAM J. Imaging Sci., 6 (2013), 2134-2173. https://doi.org/10.1137/120894130
  22. A. Langer, Automated parameter selection in the L1-L2-TV model for removing gaussian plus impulse noise, Inverse Problems, 33 (2017), 074002. https://doi.org/10.1088/0266-5611/33/7/074002
  23. J. C. D. los Reyes and C.-B. Schonlieb, Image denoising: learning the noise model via nonsmooth PDE- constrained optimization, Inverse Problems and Imaging, 7 (2013), 1183-1214. https://doi.org/10.3934/ipi.2013.7.1183
  24. A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. Talbot, A convex approach for image restoration with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 62 (2015), 17-30.
  25. L. Calatroni, C. Chung, J. D. L. Reyes, C.-B. Schonlieb, and T. Valkonen, Bilevel approaches for learning of variational imaging models, Variational Methods: In Imaging and Geometric Control, Radon Series on Computational and Applied Mathematics, De Gruyter, 2017.
  26. L. Calatroni, J. C. D. L. Reyes, and C.-B. Schonlieb, Infimal convolution of data discrepancies for mixed noise removal, SIAM J. Imaging Sci., 10 (2017), 1196-1233. https://doi.org/10.1137/16M1101684
  27. G. Sapiro, Vector-valued active contours, IEEE, Proceedings of CVPR, San Francisco, CA, USA 1996.
  28. P. Blomgren and T. F. Chan, Color tv: Total variation methods for restoration of vector valued images, IEEE Trans. Image Process., 7 (1998), 304-309. https://doi.org/10.1109/83.661180
  29. R. Kimmel, R. Malladi, and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images, Int. J. Comput. Vis., 39 (2000), 111-129. https://doi.org/10.1023/A:1008171026419
  30. T. Chan, S. Kang, and J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Vis. Commun. Image Represent., 12 (2001), 422-435. https://doi.org/10.1006/jvci.2001.0491
  31. H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization, MPS-SIAM Ser. Optim., SIAM, Philadelphia, 2006.
  32. X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Probl. Imaging, 2 (2008), 255-284.
  33. Y. Wen, M. Ng, and Y. Huang, Efficient total variation minimization methods for color image restoration, IEEE Trans. Image Process., 17 (2008), 2081-2088. https://doi.org/10.1109/TIP.2008.2003406
  34. P. Rodriguez and B. Wohlberg, A generalized vector-valued total variation algorithm, IEEE, Proceedings of ICIP, Cairo, Egypt 2009.
  35. C. Wu and X.-C. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339. https://doi.org/10.1137/090767558
  36. S. Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos, Convex generalizations of total variation based on the structure tensor with applications to inverse problems, Lecture Notes in Computer Science 7893, Springer Berlin, Heidelberg, Proceedings of SSVM, Graz, Austria, 2013.
  37. S. Ono and I. Yamada, Decorrelated vectorial total variation, IEEE, Proceedings of CVPR, Columbus, OH, USA 2014.
  38. R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl, Restoration of manifold-valued images by half-quadratic minimization, Inverse Probl. Imaging, 10 (2016), 281-304. https://doi.org/10.3934/ipi.2016001
  39. J. Duran, M. Moeller, C. Sbert, and D. Cremers, Collaborative total variation: A general framework for vectorial TV models, SIAM J. Imaging Sci., 9 (2016), 116-151. https://doi.org/10.1137/15M102873X
  40. Z. Jia, M. K. Ng, and W. Wang, Color image restoration by saturation-value total variation, SIAM J. Imaging Sci., 12 (2019), 972-1000. https://doi.org/10.1137/18m1230451
  41. W. Wang, M. Yao, and M. K. Ng, Color image multiplicative noise and blur removal by saturation-value total variation, Appl. Math. Model., 90 (2021), 240-264. https://doi.org/10.1016/j.apm.2020.08.052
  42. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010), 1-122. https://doi.org/10.1561/2200000016
  43. P. Denis, P. Carre, and C. Fernandez-Maloigne, Spatial and spectral quaternionic approaches for colour im- ages, Comput. Vis. Image Und., 107 (2007), 74-87. https://doi.org/10.1016/j.cviu.2006.11.019
  44. I. Csiszar and G. Tusna, Information geometry and alternating minimization procedures, Statistics and Deci- sions, 1 (1984), 205-237.
  45. A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97. https://doi.org/10.1023/b:jmiv.0000011321.19549.88
  46. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120-145. https://doi.org/10.1007/s10851-010-0251-1
  47. T. Goldstein and S. Osher, The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343. https://doi.org/10.1137/080725891
  48. C. Chen, M. Ng, and X.-L. Zhao, Alternating direction method of multipliers for nonlinear image restoration problems, IEEE Trans. Image Process., 24 (2015), 33-43. https://doi.org/10.1109/TIP.2014.2369953
  49. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612. https://doi.org/10.1109/TIP.2003.819861
  50. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse 3-d transform-domain collab- orative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095. https://doi.org/10.1109/TIP.2007.901238
  51. Y. Dong, M. Hintermuller, and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vis., 40 (2011), 82-104. https://doi.org/10.1007/s10851-010-0248-9