과제정보
This research was supported by the "Korea Institute of Civil Engineering and Building Technology (KICT), grant number 20220332-001" and "Korea Institute of Marine Science & Technology Promotion (KIMST), grant number 2016-0065".
참고문헌
- Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
- Gerolymos, N. and Gazetas, G. (2005), "Phenomenological model applied to inelastic response of soil-pile interaction systems", Soil. Found., 45(4), 119-132. https://doi.org/10.3208/sandf.45.4_119.
- Haigh, S.K. and Gopal Madabhushi, S.P. (2011), "Centrifuge modelling of pile-soil interaction in liquefiable slopes", Geomech. Eng., 3(1), 1-16. https://doi.org/10.12989/gae.2011.3.1.001.
- Kim, D.S., Kim, N.R., Choo, Y.W. and Cho, G.C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE J. Civil Eng., 17(1), 77-84. https://doi.org/10.1007/s12205-013-1350-5.
- Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
- Lees, A.S. and Richards, D.J. (2011), "Centrifuge modelling of temporary roadway systems subject to rolling type loading", Geomech. Eng., 3(1), 45-59. https://doi.org/10.12989/gae.2011.3.1.045.
- Li, Z., Escoffier, S. and Kotronis, P. (2016), "Centrifuge modeling of batter pile foundations under sinusoidal dynamic excitation", Bull. Earthq. Eng., 14(3), 673-697. https://doi.org/10.1007/s10518-015-9859-2.
- Ling, H.I., Mohri, Y. and Kawabata, T. (1999), "Seismic analysis of sliding wedge: Extended Francais-Culmann's analysis", Soil Dyn. Earthq. Eng., 18(5), 387-393. https://doi.org/10.1016/S0267-7261(99)00005-6.
- Manandhar, S., Kim, S.N., Ha, J.G., Ko, K.W., Lee, M.G. and Kim, D.S. (2021). "Liquefaction evaluation using frequency characteristics of acceleration records in KAIST centrifuge tests for LEAP", Soil Dyn. Earthq. Eng., 140, 106332. https://doi.org/10.1016/j.soildyn.2020.106332.
- MATLAB (2016), MATLAB Version R2016a, a Computer Program, The Mathworks Inc., Natick, MA-USA.
- Matlock, H. (1970), "Correlations for design of laterally loaded piles in soft clay", Proceedings: Second Offshore Technology Conference, Huston, Texas, USA, April.
- McCullough, N.J., Dickenson, S.E., Schlechter, S.M. and Boland, J.C. (2007), "Centrifuge seismic modeling of Pile-supported wharves", Geotech. Test. J., 30(5), 349-359. https://doi.org/10.1520/GTJ14066.
- MOF (Ministry of Oceans and Fisheries) (2014), Design Standards of Harbour and Port, Ministry of Oceans and Fisheries, Sejong, Korea. (in Korean)
- Murchison, J.M. and O'Neill, M.W. (1984,), "Evaluation of P-Y relationships in cohesionless soils", Analysis and Design of Pile Foundations, 174-191, October.
- Nguyen, B.N., Tran, N.X., Han, J.T. and Kim, S.R. (2018), "Evaluation of the dynamic p-yp loops of pile-supported structures on sloping ground", Bull. Earthq. Eng., 16(12), 5821-5842. https://doi.org/10.1007/s10518-018-0428-3.
- Nogami, T., Otani, J., Konagai, K. and Chen, H.L. (1992), "Nonlinear soil-pile interaction model for dynamic lateral motion", J. Geotech. Eng., 118(1), 89-106. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(89)
- Park, S., Kim, J.H., Kim, S.J., Park, J.H., Kwak, K.S. and Kim, D.S. (2021), "Centrifuge modelling of rock-socketed drilled shafts under uplift load", Geomech. Eng., 24(5), 431-441. https://doi.org/10.12989/gae.2021.24.5.431.
- PIANC (International Navigation Association) (2001), Seismic Design Guidelines for Port Structures, International Navigation Association, Rotterdam, Netherlands.
- Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceeding: 6th Offshore Technology Conference, Huston, Texas, May.
- Tran, N.X., Bong, T., Yoo, B.S. and Kim, S.R. (2021b), "Evaluation of the soil-pile interface properties in the lateral direction for seismic analysis in sand", Soil Dyn. Earthq. Eng., 140, 106473. https://doi.org/10.1016/j.soildyn.2020.106473.
- Tran, N.X., Nguyen, B.N., Yoo, B.S. and Kim, S.R. (2021a), "Slope effect on dynamic p-y backbone curve in dry sand", Soil Dyn. Earthq. Eng., 144, 106693. https://doi.org/10.1016/j.soildyn.2021.106693.
- Yoo, M.T., Choi, J.I., Han, J.T. and Kim, M.M. (2013), "Dynamic P-Y curves for dry sand from centrifuge tests", J. Earthq. Eng., 17(7), 1082-1102. https://doi.org/10.1080/13632469.2013.801377.
- Yun, J.W. and Han, J.T. (2020), "dynamic behavior of pilesupported structures with batter piles according to the ground slope through centrifuge model tests", Appl. Sci., 10(16), 5600. https://doi.org/10.3390/app10165600.
- Yun, J.W. and Han, J.T. (2021), "Evaluation of soil spring methods for response spectrum analysis of pile-supported structures via dynamic centrifuge tests", Soil Dyn. Earthq. Eng., 141, 106537. https://doi.org/10.1016/j.soildyn.2020.106537.
- Yun, J.W., Han, J.T. and Kim, J.K. (2021), "Evaluation of seismic performance of Pile-supported wharves installed in saturated sand through response spectrum analysis and dynamic centrifuge model test", J. Korean Geotech. Soc., 37(12), 71-87. (in Korean) https://doi.org/10.7843/kgs.2021.37.12.73.
- Yun, J.W., Han, J.T. and Kim, S.R. (2019), "Evaluation of virtual fixed points in the response spectrum analysis of a Pilesupported wharf", Geotechnique Lett., 9(3), 238-244. https://doi.org/10.1680/jgele.19.00013.
- Yun, J.W., Jin, T.H. and Kim, J.K. (2022), "Evaluation of the virtual fixed-point method for seismic design of pile-supported structures" KSCE J. Civil Eng., 26, 596-605. https://doi.org/10.1007/s12205-021-0422-1.