Acknowledgement
This work was supported by the National Research Foundation (NRF) of Korea funded by the Korean Government (MSIT) (Grant No. 2020R1A2C1005042).
References
- Baruchel, J., Di Michiel, M., Lafford, T., Lhuissier, P., Meyssonnier, J., Nguyen-Thi, H., Philip, A., Pernot, P., Salvo, L., Scheel, M. 2013. Synchrotron X-ray imaging for crystal growth studies. Comptes Rendus Physique 14(2-3): 208-220. https://doi.org/10.1016/j.crhy.2012.10.010
- Despres, A., Pizzi, A. 2006. Colloidal aggregation of aminoplastic polycondensation resins: Urea-formaldehyde versus melamine-formaldehyde and melamine-urea-formaldehyde resins. Journal of Applied Polymer Science 100(2): 1406-1412. https://doi.org/10.1002/app.23230
- Drnovsek, N., Kocen, R., Gantar, A., Drobnic-Kosorok, M., Leonardi, A., Krizaj, I., Recnik, A., Novak, S. 2016. Size of silk fibroin β-sheet domains affected by Ca2+. Journal of Materials Chemistry B 4(40): 6597-6608. https://doi.org/10.1039/C6TB01101B
- Ferg, E.E., Pizzi, A., Levendis, D.C. 1993. 13C NMR analysis method for urea-formaldehyde resin strength and formaldehyde emission. Journal of Applied Polymer Science 50(5): 907-915. https://doi.org/10.1002/app.1993.070500519
- Han, H., Lee, S., Yang, S., Choi, C., Kang, S. 2019. Evaluation of formaldehyde emission from wood-based panels using accelerated collection method. Journal of the Korean Wood Science and Technology 47(2): 129-144. https://doi.org/10.5658/WOOD.2019.47.2.129
- Hong, M.K., Lubis, M.A.R., Park, B.D. 2017. Effect of panel density and resin content on properties of medium density fiberboard. Journal of the Korean Wood Science and Technology 45(4): 444-455. https://doi.org/10.5658/WOOD.2017.45.4.444
- Jeong, B., Park, B.D. 2019. Performance of urea-for-maldehyde resins synthesized at two different low molar ratios with different numbers of urea addition. Journal of the Korean Wood Science and Technology 47(2): 221-228. https://doi.org/10.5658/WOOD.2019.47.2.221
- Jeong, B., Park, B.D., Causin, V. 2020. Effects of storage time on molecular weights and properties of melamine-urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 48(3): 291-302. https://doi.org/10.5658/WOOD.2020.48.3.291
- Keith Dunker, A., John, W.E., Rammon, R., Farmer, B., Johns, S.J. 1986. Slightly bizarre protein chemistry: Urea-formaldehyde resin from a biochemical perspective. The Journal of Adhesion 19(2): 153-176. https://doi.org/10.1080/00218468608071219
- Kim, J.K., Lee, C., Lim, S.W., Adhikari, A., Andring, J.T., McKenna, R., Ghim, C.M., Kim, C.U. 2020. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nature Communications 11(1): 4557. https://doi.org/10.1038/s41467-020-18425-5
- Kim, M., Park, B.D. 2021a. A method of measuring wood failure percentage of wood specimens bonded with melamine-urea-formaldehyde resins using image analysis. Journal of the Korean Wood Science and Technology 49(3): 274-282. https://doi.org/10.5658/WOOD.2021.49.3.274
- Kim, M., Park, B.D. 2021b. Effects of synthesis method, melamine content and GPC parameter on the molecular weight of melamine-urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 49(1): 1-13. https://doi.org/10.5658/WOOD.2021.49.1.1
- Kuei, B., Aplan, M.P., Litofsky, J.H., Gomez, E.D. 2020. New opportunities in transmission electron microscopy of polymers. Materials Science and Engineering: R: Reports 139: 100516. https://doi.org/10.1016/j.mser.2019.100516
- Levendis, D., Pizzi, A., Ferg, E. 1992. The correlation of strength and formaldehyde emission with the crystalline/amorphous structure of UF resins. Holzforschung 46(3): 263-269. https://doi.org/10.1515/hfsg.1992.46.3.263
- Li, J., Zhang, Y. 2021. Morphology and crystallinity of urea-formaldehyde resin adhesives with different molar ratios. Polymers 13(5): 673. https://doi.org/10.3390/polym13050673
- Libera, M.R., Egerton, R.F. 2010. Advances in the transmission electron microscopy of polymers. Polymer Reviews 50(3): 321-339. https://doi.org/10.1080/15583724.2010.493256
- Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O.G., Xin, H.L., Tamura, N., Tian, C., Weng, T.C., Yang, X.Q., Meng, Y.S., Nordlund, D., Yang, W., Doeff, M.M. 2017. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chemical Reviews 117(21) 13123-13186. https://doi.org/10.1021/acs.chemrev.7b00007
- Liu, M., Thirumalai, R.V.K.G., Wu, Y., Wan, H. 2017. Characterization of the crystalline regions of cured urea formaldehyde resin. RSC Advances 7(78): 49536-49541. https://doi.org/10.1039/C7RA08082D
- Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019a. Effect of synthesis method and melamine content of melamine-urea-formaldehyde resins on bond-line features in plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586. https://doi.org/10.5658/WOOD.2019.47.5.579
- Lubis, M.A.R., Park, B.D. 2020. Influence of initial molar ratios on the performance of low molar ratio urea-formaldehyde resin adhesives. Journal of the Korean Wood Science and Technology 48(2): 136-153. https://doi.org/10.5658/WOOD.2020.48.2.136
- Lubis, M.A.R., Park, B.D., Lee, S.M. 2019b. Performance of hybrid adhesives of blocked-pMDI/melamine-urea-formaldehyde resins for the surface lamination on plywood. Journal of the Korean Wood Science and Technology 47(2): 200-209. https://doi.org/10.5658/WOOD.2019.47.2.200
- Myers, G.E. 1984. How mole ratio of UF resin affects formaldehyde emission and other properties: A literature critique. Forest Products Journal 34(5): 35-41.
- Nuryawan, A., Singh, A.P., Zanetti, M., Park, B.D., Causin, V. 2017. Insights into the development of crystallinity in liquid urea-formaldehyde resins. International Journal of Adhesion and Adhesives 72: 62-69. https://doi.org/10.1016/j.ijadhadh.2016.10.004
- Park, B.D., Causin, V. 2013. Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal 49(2): 532-537. https://doi.org/10.1016/j.eurpolymj.2012.10.029
- Park, B.D., Jeong, H.W. 2011. Hydrolytic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion and Adhesives 31(6): 524-529. https://doi.org/10.1016/j.ijadhadh.2011.05.001
- Park, B.D., Jeong, H.W., Lee, S.M. 2011. Morphology and chemical elements detection of cured urea-for-maldehyde resins. Journal of Applied Polymer Science 120(3): 1475-1482. https://doi.org/10.1002/app.33247
- Park, S., Park, B.D. 2021. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. Journal of the Korean Wood Science and Technology 49(2): 169-180. https://doi.org/10.5658/WOOD.2021.49.2.169
- Pizzi, A., Lipschitz, L., Valenzuela, J. 1994. Theory and practice of the preparation of low formaldehyde emission UF adhesives. Holzforschung 48(3): 254-261. https://doi.org/10.1515/hfsg.1994.48.3.254
- Pratt, T.J., Johns, W.E., Rammon, R.M., Plagemann, W.L. 1985. A novel concept on the structure of cured urea-formaldehyde resin. The Journal of Adhesion 17(4): 275-295. https://doi.org/10.1080/00218468508081165
- Schuett, T., Geitner, R., Zechel, S., Schubert, U.S. 2021. Dialysis diffusion kinetics in polymer purification. Macromolecules 54(20): 9410-9417. https://doi.org/10.1021/acs.macromol.1c01241
- Sedigh Rahimabadi, P., Khodaei, M., Koswattage, K.R. 2020. Review on applications of synchrotron-based X-ray techniques in materials characterization. X-Ray Spectrometry 49(3): 348-373. https://doi.org/10.1002/xrs.3141
- Singh, A.P., Causin, V., Nuryawan, A., Park, B.D. 2014. Morphological, chemical and crystalline features of urea-formaldehyde resin cured in contact with wood. European Polymer Journal 56: 185-193. https://doi.org/10.1016/j.eurpolymj.2014.04.014
- Singh, A.P., Nuryawan, A., Park, B.D., Lee, K.H. 2015. Urea-formaldehyde resin penetration into Pinus radiata tracheid walls assessed by TEM-EDXS. Holzforschung 69(3): 303-306. https://doi.org/10.1515/hf-2014-0103
- Steinhof, O., Kibrik, E.J., Scherr, G., Hasse, H. 2014. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magnetic Resonance in Chemistry 52(4): 138-162. https://doi.org/10.1002/mrc.4044
- Stuligross, J., Koutsky, J.A. 1985. A morphological study of urea-formaldehyde resins. The Journal of Adhe-sion 18(4): 281-299. https://doi.org/10.1080/00218468508080464
- Tosaka, M., Danev, R., Nagayama, K. 2005. Application of phase contrast transmission microscopic methods to polymer materials. Macromolecules 38(19): 7884-7886. https://doi.org/10.1021/ma0512197
- Wang, H., Cao, M., Li, T., Yang, L., Duan, Z., Zhou, X., Du, G. 2018. Characterization of the low molar ratio urea-formaldehyde resin with 13C NMR and ESI-MS: Negative effects of the post-added urea on the urea-formaldehyde polymers. Polymers 10(6): 602. https://doi.org/10.3390/polym10060602
- Wibowo, E.S., Lubis, M.A.R., Park, B.D. 2021. Simultaneous improvement of formaldehyde emission and adhesion of medium-density fiberboard bonded with low-molar ratio urea-formaldehyde resins modified with nanoclay. Journal of the Korean Wood Science and Technology 49(5): 453-461. https://doi.org/10.5658/WOOD.2021.49.5.453
- Wibowo, E.S., Lubis, M.A.R., Park, B.D., Kim, J.S., Causin, V. 2020a. Converting crystalline thermosetting urea-formaldehyde resins to amorphous polymer using modified nanoclay. Journal of Industrial and Engineering Chemistry 87: 78-89. https://doi.org/10.1016/j.jiec.2020.03.014
- Wibowo, E.S., Park, B.D. 2020. Determination of crystallinity of thermosetting urea-formaldehyde resins using deconvolution method. Macromolecular Research 28(6): 615-624. https://doi.org/10.1007/s13233-020-8076-2
- Wibowo, E.S., Park, B.D. 2021. Crystalline lamellar structure of thermosetting urea-formaldehyde resins at a low molar ratio. Macromolecules 54(5): 2366-2375. https://doi.org/10.1021/acs.macromol.1c00073
- Wibowo, E.S., Park, B.D. 2022. Two-dimensional nuclear magnetic resonance analysis of hydrogen-bond for-mation in thermosetting crystalline urea-formaldehyde resins at a low molar ratio. ACS Applied Polymer Materials 4(2): 1084-1094. https://doi.org/10.1021/acsapm.1c01521
- Wibowo, E.S., Park, B.D., Causin, V. 2020b. Hydrogenbond-induced crystallization in low-molar-ratio urea -formaldehyde resins during synthesis. Industrial & Engineering Chemistry Research 59(29): 13095-13104. https://doi.org/10.1021/acs.iecr.0c02268
- Wibowo, E.S., Park, B.D., Causin, V. 2022. Recent advances in urea-formaldehyde resins: Converting crystalline thermosetting polymers back to amorphous ones. Polymer Reviews 62(4): 722-756. https://doi.org/10.1080/15583724.2021.2014520
- Widjonarko, N.E. 2016. Introduction to advanced X-ray diffraction techniques for polymeric thin films. Coatings 6(4): 54. https://doi.org/10.3390/coatings6040054