DOI QR코드

DOI QR Code

Artificial neural network modeling to predict the flexural behavior of RC beams retrofitted with CFRP modified with carbon nanotubes

  • Almashaqbeh, Hashem K. (Department of Civil Engineering, Isra University) ;
  • Irshidat, Mohammad R. (Center for Advanced Materials (CAM), Qatar University) ;
  • Najjar, Yacoub (Department of Civil Engineering, The University of Mississippi) ;
  • Elmahmoud, Weam (Department of Civil Engineering, The University of Mississippi)
  • Received : 2021.04.01
  • Accepted : 2022.07.20
  • Published : 2022.09.25

Abstract

In this paper, the artificial neural network (ANN) is employed to predict the flexural behavior of reinforced concrete (RC) beams retrofitted with carbon fiber/epoxy composites modified by carbon nanotubes (CNTs). Multiple techniques are used to improve the accuracy of the ANN prediction, as the data represents a multivalued function. These techniques include static ANN modeling, ANN modeling with load history, and ANN modeling with double load history. The developed ANN models are used to predict the load-displacement profiles of beams retrofitted with either CFRP or CNTs modified CFRP, flexural capacity, and maximum displacement of the beams. The results demonstrate that the ANN is able to predict the flexural behavior of the retrofitted RC beams as well as the effect of each parameter including the type of the used epoxy and the presence of the CNTs.

Keywords

References

  1. Adhikary, B.B. and Mutsuyoshi, H. (2004), "Artificial neural networks for the prediction of shear capacity of steel plate strengthened RC beams", Constr. Build Mater., 18(6), 409-417. https://doi.org/10.1016/j.conbuildmat.2004.03.002.
  2. Al-Rousan, R.Z. and Issa, M.A. (2016), "Flexural behavior of RC beams externally strengthened with CFRP composites exposed to severe environment conditions", KSCE J. Civil Eng., 21(6), 2300-2309. https://doi.org/10.1007/S12205-016-0570-X.
  3. Alagusundaramoorthy, P., Harik, I.E. and Choo, C.C. (2003), "Flexural behavior of R/C beams strengthened with carbon fiber reinforced polymer sheets or fabric", J. Compos. Constr., 7(4), 292-301. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(292).
  4. Ali, A., Abdalla, J., Hawileh, R. and Galal, K. (2014), "CFRP mechanical anchorage for externally strengthened RC beams under flexure", Phys. Procedia, 55, 10-16. https://doi.org/10.1016/j.phpro.2014.07.002.
  5. Almashaqbeh, H.K., Irshidat, M.R. and Najjar, Y. (2022), "Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives", Smart Struct. Syst., 29(2), 337-350. https://doi.org/10.12989/sss.2022.29.2.337.
  6. Aram, M.R., Czaderski, C. and Motavalli, M. (2008), "Debonding failure modes of flexural FRP-strengthened RC beams", Compos. Part B: Eng., 39(5), 826-841. https://doi.org/10.1016/j.compositesb.2007.10.006.
  7. Arslan, M.H. (2010), "Predicting of torsional strength of RC beams by using different artificial neural network algorithms and building codes", Adv. Eng. Softw., 41(7-8), 946-955. https://doi.org/10.1016/j.advengsoft.2010.05.009.
  8. Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
  9. Bilisik, K., Karaduman, N. and Sapanci, E. (2020), "Short-beam shear of nanoprepreg/nanostitched three-dimensional carbon/epoxy multiwall carbon nanotube composites", J. Compos. Mater., 54(3), 311-329. https://doi.org/10.1177/0021998319863472.
  10. Cha, J., Jun, G.H., Park, J.K., Kim, J.C., Ryu, H.J. and Hong, S.H. (2017), "Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes", Compos. Part B: Eng., 129, 169-179. https://doi.org/10.1016/j.compositesb.2017.07.070.
  11. Dong, J., Wang, Q. and Guan, Z. (2013), "Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets", Compos. Part B: Eng., 44(1), 604.-612. https://doi.org/10.1016/j.compositesb.2012.02.018.
  12. Esfahani, M.R., Kianoush, M.R. and Tajari, A.R. (2007), "Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets", Eng. Struct., 29(10), 2428-2444. https://doi.org/10.1016/j.engstruct.2006.12.008.
  13. Eskandari-Naddaf, H. and Kazemi, R. (2017), "ANN prediction of cement mortar compressive strength, influence of cement strength class", Constr. Build. Mater., 138, 1-11. https://doi.org/10.1016/j.conbuildmat.2017.01.132.
  14. Feng, Q.P., Deng, Y.H., Xiao, H.M., Liu, Y., Qu, C.B., Zhao, Y. and Fu, S.Y. (2014), "Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes", Compos. Sci. Technol., 104, 59-65. https://doi.org/10.1016/j.compscitech.2014.09.006.
  15. Ferrari, V.J., De Hanai, J.B. and De Souza, R.A. (2013), "Flexural strengthening of reinforcement concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP)", Constr. Build. Mater., 48, 485-498. https://doi.org/10.1016/j.conbuildmat.2013.07.026.
  16. Firouzi, A., Taki, A. and Mohammadzadeh, S. (2019), "Time-dependent reliability analysis of RC beams shear and flexural strengthened with CFRP subjected to harsh environmental deteriorations", Eng. Struct., 196, 109326. https://doi.org/10.1016/j.engstruct.2019.109326.
  17. Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 39(12), 1876-1883. https://doi.org/10.1016/j.compositesa.2008.09.009.
  18. Hashemi, S. and Al-Mahaidi, R. (2012), "Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives", Constr. Build. Mater., 26(1), 268-273. https://doi.org/10.1016/j.conbuildmat.2011.06.021.
  19. Hosseini Farrash, S.M., Shariati, M. and Rezaeepazhand, J. (2017), "The effect of carbon nanotube dispersion on the dynamic characteristics of unidirectional hybrid composites: An experimental approach", Compos. Part B: Eng., 122, 1-8. https://doi.org/10.1016/j.compositesb.2017.04.003
  20. Hu, B., Zhou, Y., Xing, F., Sui, L. and Luo, M. (2019), "Experimental and theoretical investigation on the hybrid CFRP-ECC flexural strengthening of RC beams with corroded longitudinal reinforcement", Eng. Struct., 200, 109717. https://doi.org/10.1016/j.engstruct.2019.109717.
  21. Hu, N., Li, Y., Nakamura, T., Katsumata, T., Koshikawa, T. and Arai, M. (2012), "Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates", Compos. Part B: Eng., 43(1), 3-9. https://doi.org/10.1016/j.compositesb.2011.04.022.
  22. Irshidat, M.R. and Al-Saleh, M.H. (2017), "Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP", Constr. Build. Mater., 145, 474-482. https://doi.org/10.1016/j.conbuildmat.2017.04.047.
  23. Irshidat, M.R., Al-Saleh, M.H. and Al-Shoubaki, M. (2015), "Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns", Compos. Struct., 134, 523-532. https://doi.org/10.1016/j.compstruct.2015.08.108.
  24. Irshidat, M.R., Al-Saleh, M.H. and Almashagbeh, H. (2016), "Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites", Mater. Des., 89, 225-234. https://doi.org/10.1016/j.matdes.2015.09.166.
  25. Itani, O.M. and Najjar, Y.M. (2000), "Three-dimensional modeling of spatial soil properties via artificial neural networks", Transp. Res. Record: J. Trans. Res. Board, 1709(1), 50-59. https://doi.org/10.3141/1709-07.
  26. Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2018), "GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups", Comput. Concrete, 22(2), 197-207. https://doi.org/10.12989/cac.2018.22.2.197.
  27. Li, L., Guo, Y. and Liu, F. (2008), "Test analysis for FRC beams strengthened with externally bonded FRP sheets", Constr. Build. Mater., 22(3), 315-323. https://doi.org/10.1016/j.conbuildmat.2006.08.016.
  28. Li, Y., Liu, X. and Li, J. (2017), "Experimental study of retrofitted cracked concrete with FRP and nanomodified epoxy resin", J. Mater. Civil Eng., 29(5), 04016275. https://doi.org/10.1061/(asce)mt.1943-5533.0001810.
  29. Lin, W., Shi, Q.Q., Chen, H. and Wang, J.N. (2019), "Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding", Carbon, 153, 308-314. https://doi.org/10.1016/j.carbon.2019.07.002.
  30. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
  31. McElroy, P.D., Bibang, H., Emadi, H., Kocoglu, Y., Hussain, A. and Watson, M.C. (2021), "Artificial neural network (ANN) approach to predict unconfined compressive strength (UCS) of oil and gas well cement reinforced with nanoparticles", J. Nat. Gas Sci. Eng., 88, 103816. https://doi.org/10.1016/j.jngse.2021.103816.
  32. Merkulov, S.I., Rimshin, V.I., Shubin, I.L. and Esipov, S.M. (2020), "Modeling of the stress-strain state of a composite external strengthening of reinforced concrete bending elements", IOP Conf. Ser.: Mater. Sci. Eng., 753(5), 052044. https://doi.org/10.1088/1757-899X/753/5/052044.
  33. Najjar, Y.M. and Huang, C. (2007), "Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach", Comput. Geotech., 34(5), 346-361. https://doi.org/10.1016/j.compgeo.2007.06.006.
  34. Naser, M., Abu-Lebdeh, G. and Hawileh, R. (2012), "Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN", Constr. Build. Mater., 37, 301-309. https://doi.org/10.1016/j.conbuildmat.2012.07.001.
  35. Nawaz, W., Elchalakani, M., Karrech, A., Yehia, S., Yang, B. and Youssf, O. (2022), "Flexural behavior of all lightweight reinforced concrete beams externally strengthened with CFRP sheets", Constr. Build. Mater., 327, 126966. https://doi.org/10.1016/j.conbuildmat.2022.126966.
  36. Obaidat, Y.T., Heyden, S., Dahlblom, O., Abu-Farsakh, G. and Abdel-Jawad, Y. (2011), "Retrofitting of reinforced concrete beams using composite laminates", Constr. Build. Mater., 25(2), 591-597. https://doi.org/10.1016/j.conbuildmat.2010.06.082.
  37. Onal, O. and Ozturk, A.U. (2010), "Artificial neural network application on microstructure-compressive strength relationship of cement mortar", Adv. Eng. Softw., 41(2), 165-169. https://doi.org/10.1016/j.advengsoft.2009.09.004.
  38. Perera, R., Barchin, M., Arteaga, A. and De. Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B: Eng., 41(4), 287-298. https://doi.org/10.1016/j.compositesb.2010.03.003.
  39. Pothnis, J.R., Kalyanasundaram, D. and Gururaja, S. (2021), "Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites", Compos. Part A: Appl. Sci. Manuf., 140, 106155. https://doi.org/10.1016/j.compositesa.2020.106155.
  40. Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265.
  41. Rahman Sobuz, H., Ahmed, E., Hasan, N.M.S. and Uddin, A. (2011), "Use of carbon fiber laminates for strengthening reinforced concrete beams in bending", Int. J. Civil Struct. Eng., 2(1), 67-84.
  42. Ranjbar, M. and Feli, S. (2019), "Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by MWCNTs", J. Compos. Mater., 53(5), 693-705. https://doi.org/10.1177/0021998318790049.
  43. Roy, S., Petrova, R.S. and Mitra, S. (2018), "Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites", Nanotechnol. Rev., 7(6), 475-485. https://doi.org/10.1515/ntrev-2018-0068.
  44. Shirkavand Hadavand, B., Mahdavi Javid, K. and Gharagozlou, M. (2013), "Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite", Mater. Des., 50, 62-67. https://doi.org/10.1016/j.matdes.2013.02.039.
  45. Shokrieh, M.M. and Rafiee, R. (2010), "Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites", Compos. Struct., 92(10), 2415-2420. https://doi.org/10.1016/j.compstruct.2010.02.018.
  46. Siddiqui, N.A., Khan, S.U. and Kim, J.K. (2013), "Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes", Compos. Struct., 104, 230-238. https://doi.org/10.1016/j.compstruct.2013.04.033.
  47. Tanarslan, H.M., Secer, M. and Kumanlioglu, A. (2012), "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks", Constr. Build. Mater., 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008.
  48. Wernik, J.M. and Meguid, S.A. (2014), "On the mechanical characterization of carbon nanotube reinforced epoxy adhesives", Mater. Des., 59, 19-32. https://doi.org/10.1016/j.matdes.2014.02.034.
  49. Xue, W., Tan, Y. and Zeng, L. (2010), "Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates", Compos. Struct., 92(3), 612-622. https://doi.org/10.1016/j.compstruct.2009.09.036.
  50. Yasarer, H. and Najjar, Y.M. (2014), "Characterizing the permeability of kansas concrete mixes used in PCC pavements", Int. J. Geomech., 14(4), 04014017. https://doi.org/10.1061/(asce)gm.1943-5622.0000362.
  51. Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete, 23(1), 49-60. https://doi.org/10.12989/cac.2019.23.1.049.