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MANNHEIM PARTNER P-TRAJECTORIES IN THE

EUCLIDEAN 3-SPACE E3

Zehra İşbilir∗, Kahraman Esen Özen, and Murat Tosun

Abstract. Mannheim introduced the concept of a pair of curves, called
as Mannheim partner curves, in 1878. Until now, Mannheim partner

curves have been studied widely in the literature. In this study, we take

into account of this concept according to Positional Adapted Frame (PAF)
for the particles moving in the 3-dimensional Euclidean space. We intro-

duce a new type special trajectory pairs which are called Mannheim part-
ner P-trajectories in the Euclidean 3-space. The relationships between the

PAF elements of this pair are investigated. Also, the relations between

the Serret-Frenet basis vectors of Mannheim partner P-trajectories are
given. Afterwards, we obtain the necessary conditions for one of these

trajectories to be an osculating curve and for other to be a rectifying

curve. Moreover, we provide an example including an illustrative figure.

1. Introduction

The curve theory and the applications of it are a substantial notion for
several disciplines such as differential geometry, robotics, and so on. In the
existing literature, lots of studies have been done and ongoing since the topic
is attached to the attention of several researchers. In differential geometry,
the concept of spatial curves in 3-dimensional Euclidean space has a significant
place and is one of the main topics. Curve pairs such as Mannheim curve pairs
and Bertrand curve pairs also can be given as interesting and popular research
areas for many mathematicians, especially geometers. The moving frames are
very useful tools to study the local theory of these kinds of curve pairs.

Developing new moving frames that have a common base vector with the
Serret-Frenet frame is an attractive and intriguing topic for several researchers.
The discovery of the Serret-Frenet frame is a groundbreaking invention. Then
several researchers were interested in the developing new moving frames such
as Bishop frames (type-1, type-2, type-3) [1, 16, 19]. By the same logic with

these studies, Özen and Tosun presented a new type frame which is called
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as Positional Adapted Frame (shortly PAF) for the trajectories which have
non-vanishing angular momentum and are a unit speed curve in the three-
dimensional Euclidean space E3 [12]. Also, the trajectories constructed by

Smarandache curves with respect to the PAF were studied by Özen and Tosun
in [13]. Several studies have been presented and ongoing with respect to this
new and attractive frame. For example, Gürbüz constructed the Positional
Adapted Frame in Minkowski 3-space R3

1 with the help of the method devel-
oped in [12]. Also, in this study, the author considered the evolution of an
electric field according to this frame in R3

1 [6]. Besides, Solouma examined
the characterization of some special Smarandache trajectory curves of moving
point particles by using the PAF in [17].

Mannheim partner curves are important and surprising special curves. The
principal normal line of one of these partner curves coincides with the binormal
line of the other partner curve at the corresponding points of these curves.
Although the first study was performed in 1878 by Mannheim [2], Mannheim
curves were not well known until the early 2000s. In the early 2000s, Liu
and Wang considered the Mannheim partner curves [18, 9]. In Euclidean 3-
space, the necessary and sufficient conditions were determined for a curve to
possess a Mannheim partner curve in [9]. The authors also obtained similar
conditions for the curves in Minkowski 3-space in the same study. Mannheim
offsets of ruled surfaces were defined in the study [11]. Dual Mannheim curves
were considered in the studies [14] and [5]. Also, the concept of Mannheim
partner curves were extended to different frames. For example, Kazaz et al. [8]
introduced the Mannheim partner D-curves considering the Darboux frames of
surface curves. Similarly, Masal and Azak introduced the Mannheim B-curves
using the Bishop frame [10].

This paper is organized as follows. In Section 2, we recall some required
information with respect to the used notions and notations from beginning
to end of this paper. In Section 3, we take into consideration the concept
of Mannheim partner curves with regard to PAF in the Euclidean 3-space.
We present a new type special trajectory pairs which are called Mannheim
partner P-trajectories in 3 dimensional Euclidean space. Also, the relationships
between the PAF elements of the aforementioned partners are investigated.
Afterwards, the relations between the Serret-Frenet basis vectors of Mannheim
partner P-trajectories are discussed. Furthermore, we determine the necessary
conditions for one of these partners to be an osculating curve and for other to
be a rectifying curve. Finally, we provide an illustrative example so that the
readers can visualize the Mannheim partner P-trajectories.

2. Basic Concepts

In this part, we recall some required and fundamental notions and notations
which are used throughout this paper.



Mannheim Partner P-Trajectories in the Euclidean 3-Space E3 421

In E3, let δ = (δ1, δ2, δ3),η = (η1, η2, η3) ∈ R3 be given. The standard inner
product of them and the norm of δ are given as ⟨δ,η⟩ = δ1η1+ δ2η2+ δ3η3 and

∥δ∥ =
√

⟨δ, δ⟩, respectively. If a differentiable curve α = α (s) : I ⊂ R → E3

satisfies the condition
∥∥dα

ds

∥∥ = 1 for each s ∈ I, it is called as a unit speed
curve. Then, s is said to be arc-length parameter of α. If the derivative of
a differentiable curve is non-zero along this curve, it is called a regular curve.
All regular curves can be re-parameterized by the arc-length of itself [15]. It
should be noted that we will show the differentiation according to the arc-
length parameter s with the symbol prime “′” from the beginning of this study
to the end of this study.

Firstly, we recall briefly the Serret-Frenet frame in E3. Let us take into
account of a point particle P of a constant mass moves on a unit speed
curve α = α(s). {T (s) , N (s) , B (s)} represents the Serret-Frenet frame of
α. T (s) , N (s) , B (s), which are called as tangent vector, principal nor-

mal vector, binormal vector, are calculated as T (s) = α′(s), N (s) = α′′(s)
∥α′′(s)∥

B (s) = T(s)∧N(s). In addition to this, the Serret-Frenet derivative formulas
are expressed as follows:T′(s)

N′(s)
B′(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)


where κ (s) = ∥T ′ (s)∥ is the curvature and τ (s) = −⟨B ′ (s) ,N (s)⟩ is the
torsion [15]. Throughout this paper, we will consider the curves whose Serret-
Frenet frames are well defined. That is, we will consider the curves which have
non-zero curvatures.

The key element of the construction of Positional Adapted Frame is the
angular momentum vector of the moving point particle about the origin. This
vector is defined with the help of the vector product of the position vec-
tor x = ⟨α(s),T(s)⟩T(s) + ⟨α(s),N(s)⟩N(s) + ⟨α(s),B(s)⟩B(s) and linear
momentum vector p(t) = m

(
ds
dt

)
T(s) of the moving point particle where t

denotes the time. That is, the angular momentum vector is determined by
HO = m ⟨α(s),B(s)⟩

(
ds
dt

)
N(s) − m ⟨α(s),N(s)⟩

(
ds
dt

)
B(s) where the mass is

shown with m. The angular momentum vector has a major importance in New-
tonian mechanics. One of the most famous and important conservation laws in
physics is the conservation of angular momentum. The angular momentum is
always conserved in a closed system since when the net torque is zero, angular
momentum is constant [4]. Suppose that the aforementioned angular momen-
tum vector HO does not equal to zero vector along α = α (s). This supposition
warrants that the functions ⟨α(s),N(s)⟩ and ⟨α(s),B(s)⟩ do not equal to zero
simultaneously during the motion of the moving point particle. Hence, it can
be said that the tangent line of α = α(s) never passes through the origin.
Then, the PAF can be constructed which is denoted by {T(s),M(s),Y(s)}
along α = α(s). Let us consider the vector whose initial point is the foot of the
perpendicular (from origin to instantaneous rectifying plane) and endpoint is
the foot of the perpendicular (from origin to instantaneous osculating plane).
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The equivalent of this vector at the point α (s) contributes to determine the
vector Y(s). Therefore, the base vector Y(s) of PAF is obtained as follows:

Y(s) =
⟨−α(s),N(s)⟩√

⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2
N(s) +

⟨α(s),B(s)⟩√
⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2

B(s).

The second base vector M(s) of PAF is obtained with the help of the vector
product Y(s) ∧T (s) and it is defined as follows:

M(s) =
⟨α(s),B(s)⟩√

⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2
N(s) +

⟨α(s),N(s)⟩√
⟨α(s),N(s)⟩2 + ⟨α(s),B(s)⟩2

B(s).

The following relation between the Serret-Frenet frame and PAF can be given
as:

(1)

T (s)
M(s)
Y(s)

 =

1 0 0
0 cosΩ(s) − sinΩ(s)
0 sinΩ(s) cosΩ(s)

T(s)
N(s)
B(s)


where Ω(s) is the angle between the vector B(s) and the vector Y(s) which is
positively oriented from the vector B(s) to vector Y(s) (see Figure 1).
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Figure 1. An illustration for the Positional Adapted Frame
[12]

Additionally, the derivative formulas of PAF can be presented as follows [12]:T′(s)
M′(s)
Y′(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 k3(s)
−k2(s) −k3(s) 0

 T(s)
M(s)
Y(s)
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where

k1(s) = κ(s) cosΩ(s)

k2(s) = κ(s) sinΩ(s)

k3(s) = τ(s)− Ω′(s).

Besides, the following equations hold:

k2 (s)

k1 (s)
= tanΩ (s)

k1 (s) =
√
k21 (s) + k22 (s) cosΩ (s)

k2 (s) =
√
k21 (s) + k22 (s) sinΩ (s) .

In the following equation, the method for calculation of angle Ω(s) is given:

Ω(s) =



arctan
(
− ⟨α(s),N(s)⟩

⟨α(s),B(s)⟩

)
if ⟨α(s), B(s)⟩ > 0

arctan
(
− ⟨α(s),N(s)⟩

⟨α(s),B(s)⟩

)
+ π if ⟨α(s), B(s)⟩ < 0

−π
2 if ⟨α(s), B(s)⟩ = 0 , ⟨α(s), N(s)⟩ > 0

π
2 if ⟨α(s), B(s)⟩ = 0 , ⟨α(s), N(s)⟩ < 0.

The orthonormal set {T(s),M(s),Y(s)} is called Positional Adapted Frame
(PAF) and any elements of the set {T(s),M(s),Y(s), k1(s), k2(s), k3(s)} is
said to be PAF apparatus of α = α (s) [12]. Finally we give the definitions
of the rectifying and osculating curves in 3-dimensional Euclidean space since
we will discuss these topics in the next section. A curve β = β(s) is called
as osculating curve (or rectifying curve) if its position vector always lies in its
osculating plane (or rectifying plane). One can find more details on this topic
in [3, 7].

Theorem 2.1. [12] Let α = α(s) be the unit speed parameterization of the
trajectory. Then α is a rectifying curve if and only if k2 = 0.

Theorem 2.2. [12] Let α = α(s) be the unit speed parameterization of the
trajectory. Then α is an osculating curve if and only if k1 = 0.

For more detailed information with respect to the PAF in Euclidean 3-space or
Lorentzian 3-space, we can refer to the studies [12, 13, 6, 17].

3. Mannheim Partner P-Trajectories

In this section, Mannheim partner P-trajectories will be defined and some
characterizations of these trajectories will be investigated.
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Definition 3.1. Let Q and Q∗ be the point particles of constant masses
which move in the 3-dimensional Euclidean space. Denote the unit speed pa-
rameterization of the trajectories of Q and Q∗ by α = α (s) and α∗ = α∗ (s∗)
respectively. Show the PAF apparatus of the trajectories α and α∗ with
{T, M, Y, k1, k2, k3} and {T∗, M∗, Y∗, k∗1 , k

∗
2 , k

∗
3} respectively. If the PAF

vector M coincides with the PAF vector Y∗ at the corresponding points of the
trajectory curves α and α∗, then α is called as a Mannheim partner P-trajectory
of α∗. Also, the pair {α, α∗} is said to be a Mannheim P-pair.
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Figure 2. Mannheim partner P-trajectories

Let β be the angle between the tangent vectors T and T∗. In that case, the
following matrix equation can be easily givenT

M
Y

 =

 cosβ sinβ 0
0 0 1

− sinβ cosβ 0

T∗

M∗

Y∗

(2)

by taking into consideration the definition of Mannheim P-pair.

Theorem 3.2. Let {α = α (s) , α∗ = α∗ (s)} be any Mannheim P-pair in
E3. Then, the distance between the corresponding points of α and α∗ is con-
stant.

Proof. We can easily write

α (s) = α∗ (s∗) + χ (s∗)Y∗ (s∗)(3)

where χ is a real valued smooth function of s∗(see Figure 2). The equation

T
ds

ds∗
= (1− χk∗2)T

∗ − χk∗3M
∗ + χ′Y∗(4)
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is obtained by taking the derivative of the equation (3) with respect to s* and
using the PAF derivative formulas. Since T, T∗ and M∗ are orthogonal to Y∗

and also Y∗ is a unit vector, we get χ′ = 0 by means of the inner product.
Hence, χ is a non-zero constant and the equation (4) takes the following form:

T
ds

ds∗
= (1− χk∗2)T

∗ − χk∗3M
∗.(5)

Now, let us take into consideration the distance function between two points.
In that case the equality

d (α (s) , α∗ (s∗)) = ∥α (s)− α∗ (s∗)∥ = ∥χY∗∥ = |χ|

is found. Consequently, we can conclude that the distance between each corre-
sponding points of α and α∗ is constant.

Theorem 3.3. Let {α = α (s) , α∗ = α∗ (s)} be a Mannheim P-pair in E3.
In this case, the relationships between the PAF vectors of α and α∗ are given
as in the following:T

M
Y

 =

ds∗

ds (1− χk∗2) −ds∗

ds χk
∗
3 0

0 0 1
ds∗

ds χk
∗
3

ds∗

ds (1− χk∗2) 0

T∗

M∗

Y∗

 .(6)

Proof. Assume that {α, α∗} be a Mannheim P-pair in E3. Then we have
the equations (2) and (5) as mentioned earlier. These two equations yield the
following:

cosβ
ds

ds∗
T∗ + sinβ

ds

ds∗
M∗ = (1− χk∗2)T

∗ − χk∗3M
∗.

Since a vector can be written uniquely in terms of the basis vectors, we obtain

cosβ =
ds∗

ds
(1− χk∗2)

sinβ = −ds∗

ds
χk∗3

 .(7)

Substituting the equation (7) in the equation (2) gives us the desired result.

Corollary 3.4. Let {α, α∗} be a Mannheim P-pair in E3. In this case

tanβ =
χk∗3

χk∗2 − 1

where β is the angle between T and T∗.

Theorem 3.5. Let {α = α (s) , α∗ = α∗ (s∗)} be a Mannheim P-pair in E3

and their Serret-Frenet apparatus be {T, N, B, κ, τ} and {T∗, N∗, B∗, κ∗, τ∗},
respectively. In that case, the relationships between the Serret-Frenet vectors
of this pair are as in the following:
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T∗ =
ds∗

ds
(1− χk∗2)T+

ds∗

ds
χk∗3 sinΩN+

ds∗

ds
χk∗3 cosΩB

N∗ =− ds∗

ds
χk∗3 cosΩ

∗T+

(
sinΩ∗ cosΩ +

ds∗

ds
(1− χk∗2) cosΩ

∗ sinΩ

)
N

+

(
− sinΩ∗ sinΩ +

ds∗

ds
(1− χk∗2) cosΩ

∗ cosΩ

)
B

B∗ =
ds∗

ds
χk∗3 sinΩ

∗T+

(
cosΩ∗ cosΩ− ds∗

ds
(1− χk∗2) sinΩ

∗ sinΩ

)
N

+

(
− cosΩ∗ sinΩ− ds∗

ds
(1− χk∗2) sinΩ

∗ cosΩ

)
B

where Ω is the angle between the vectors B and Y and also, Ω∗ is the angle
between the vectors B∗ and Y∗.

Proof. Using the equation (1), we can write the followings:T
M
Y

 =

1 0 0
0 cosΩ − sinΩ
0 sinΩ cosΩ

T
N
B

(8)

and T∗

N∗

B∗

 =

1 0 0
0 cosΩ∗ sinΩ∗

0 − sinΩ∗ cosΩ∗

T∗

M∗

Y∗

 .(9)

Also from the equations (6) and (7), the equalityT∗

M∗

Y∗

 =

ds∗

ds (1− χk∗2) 0 ds∗

ds χk
∗
3

−ds∗

ds χk
∗
3 0 ds∗

ds (1− χk∗2)
0 1 0

T
M
Y

(10)

can be easily seen. If we substitute the equation (10) into the equation (9), we
findT∗

N∗

B∗

 =

 ds∗

ds (1− χk∗2) 0 ds∗

ds χk
∗
3

−ds∗

ds χk
∗
3 cosΩ

∗ sinΩ∗ ds∗

ds (1− χk∗2) cosΩ
∗

ds∗

ds χk
∗
3 sinΩ

∗ cosΩ∗ −ds∗

ds (1− χk∗2) sinΩ
∗

T
M
Y

 .

Using the equation (8) in the last equation yields the desired result.

Theorem 3.6. Let {α, α∗} be a Mannheim P-pair in E3. In this case, the
relationships

1. k1 =
k∗2 − χ(k∗2)

2 − χ(k∗3)
2

1− 2χk∗2 + χ2
(
(k∗2)

2
+ (k∗3)

2
)

2. k∗2 =
k1 − µk21 − µk23

1− 2µk1 + µ2 (k21 + k23)
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are satisfied between k1, k3, k
∗
2 and k∗3 . Here µ is a constant satisfying |µ| = |χ|.

Proof. 1. Suppose that {α, α∗} is a Mannheim P-pair in E3. Then we
can write (

ds∗

ds

)2 (
(1− χk∗2)

2
+ χ2(k∗3)

2
)
= 1

with the aid of the equation (7) and the equality cos2β+sin2β = 1. This
equation gives us the following(

ds

ds∗

)2

= 1− 2χk∗2 + χ2
(
(k∗2)

2
+ (k∗3)

2
)
.(11)

On the other hand, by differentiating the equation (5) with respect to s∗

and using the PAF derivative formulas, we get

d2s

ds∗2
T+ k1

(
ds

ds∗

)2

M+ k2

(
ds

ds∗

)2

Y =
(
−χ(k∗2)

′
+ χk∗1k

∗
3

)
T∗(12)

+
(
k∗1 (1− χk∗2)− χ(k∗3)

′)
M∗

+
(
k∗2 (1− χk∗2)− χ(k∗3)

2
)
Y∗.

From the equation (12), we can write

k1

(
ds

ds∗

)2

= (1− χk∗2) k
∗
2 − χ(k∗3)

2
(13)

considering the definition of Mannheim P-pair. If the equation (11) is
substituted into the equation (13), the desired result is obtained.

2. We can easily see the equality

α∗ (s∗) = α (s) + µM (s)

where µ is a constant satisfying |µ| = |χ| (see Figure 2). Let us take the
derivative of this equation with respect to s twice. Then we obtain

T∗ ds
∗

ds
= (1− µk1)T+ µk3Y

and

d2s∗

ds2
T∗ + k∗1

(
ds∗

ds

)2

M∗ + k∗2

(
ds∗

ds

)2

Y∗ =
(
−µk1

′ − µk2k3
)
T(14)

+
(
k1 (1− µk1)− µk23

)
M

+
(
k2 (1− µk1) + µk3

′)Y.

From the equation (2), it is not difficult to see T∗ = cosβT − sinβY.
Thus we get

ds∗

ds
cosβT− ds∗

ds
sinβY = (1− µk1)T+ µk3Y
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and so ds∗

ds cosβ = 1 − µk1, −ds∗

ds sinβ = µk3. The last two equalities
yield (

ds∗

ds

)2

= 1− 2µk1 + µ2
(
k21 + k23

)
.(15)

On the other hand, the inner product of the vectors at the right and left
sides of the equation (14) with the vector M gives us the following

k∗2

(
ds∗

ds

)2

= k1 − µk21 − µk23.

Thus we find

k∗2 =
k1 − µk21 − µk23

1− 2µk1 + µ2 (k21 + k23)

due to the equation (15).

Taking into consideration Theorem 2.1, Theorem 2.2, and Theorem 3.6, we
can easily give the following corollaries.

Corollary 3.7. Let {α = α (s) , α∗ = α∗ (s∗)} be a Mannheim P-pair in
E3. Then α is an osculating curve if and only if

k∗2 − χ(k∗2)
2 − χ(k∗3)

2

1− 2χk∗2 + χ2
(
(k∗2)

2
+ (k∗3)

2
) = 0

holds.

Corollary 3.8. Let {α = α (s) , α∗ = α∗ (s∗)} be a Mannheim P-pair in
E3. Then α∗ is a rectifying curve if and only if

k1 − µk21 − µk23
1− 2µk1 + µ2 (k21 + k23)

= 0

holds.

Example 3.9. In the Euclidean 3-space, assume that a point particle P of
constant mass moves on the trajectory

α :
(
0, 20

√
65
)
→ E3

s 7→ α(s) =

(
8 cos

s
√
65

, 8 sin
s

√
65
,

s
√
65

)
(16)
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which is a unit speed curve. By straightforward calculations, we get the Serret-
Frenet vectors of α

T(s) =

(
− 8√

65
sin

s√
65

,
8√
65

cos
s√
65

,
1√
65

)
N(s) =

(
− cos

s√
65

,− sin
s√
65

, 0

)
B(s) =

(
1

√
65

sin
s√
65

,− 1√
65

cos
s√
65

,
8√
65

)
.

Since ⟨α(s),B(s)⟩ =
8s

65
> 0 and ⟨α(s),N(s)⟩ = −8, we get Ω (s) = arctan

(
65

s

)
.

Then, the PAF vectors can be constructed as:

T(s) =

(
− 8√

65
sin

s√
65

,
8√
65

cos
s√
65

,
1√
65

)

M(s) =



− cos

(
arctan

(
65

s

))
cos

s√
65

− 1√
65

sin

(
arctan

(
65

s

))
sin

s√
65

,

− cos

(
arctan

(
65

s

))
sin

s√
65

+
1√
65

sin

(
arctan

(
65

s

))
cos

s√
65

,

−
8

√
65

sin

(
arctan

(
65

s

))



Y(s) =



− sin

(
arctan

(
65

s

))
cos

s
√
65

+
1

√
65

cos

(
arctan

(
65

s

))
sin

s√
65

,

− sin

(
arctan

(
65

s

))
sin

s√
65

− 1√
65

cos

(
arctan

(
65

s

))
cos

s√
65

,

8
√
65

cos

(
arctan

(
65

s

))


.

In this case, Mannheim partner P-trajectory of α can be obtained as:

(17) α∗(s) = α(s) + µM(s)

=



8 cos
s

√
65

+ µ

(
− cos

(
arctan

(
65

s

))
cos

s
√
65

−
1

√
65

sin

(
arctan

(
65

s

))
sin

s
√
65

)
,

8 sin
s

√
65

+ µ

(
− cos

(
arctan

(
65

s

))
sin

s
√
65

+
1

√
65

sin

(
arctan

(
65

s

))
cos

s
√
65

)
,

s
√
65

−
8µ
√
65

sin

(
arctan

(
65

s

))


.

In Figure 3, the trajectories α (blue) and α∗ (red), which are given in the
equations (16) and (17), can be seen for the case µ = 1. Finally we must
note that the Figure 3 is drawn by using the website Wolfram Mathematica
(Wolfram Cloud).
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Figure 3. The trajectories α and α∗. In this plot µ = 1.
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Zehra İşbilir
Department of Mathematics, Düzce University,
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