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TIMELIKE HELICES IN THE SEMI-EUCLIDEAN SPACE E4
2

Tuba Ağirman Aydin∗, Rabil Ayazoğlu, and Huseyin Kocayiğit

Abstract. In this paper, we define timelike curves in R4
2 and characterize

such curves in terms of Frenet frame. Also, we examine the timelike

helices of R4
2, taking into account their curvatures. In addition, we study

timelike slant helices, timelike B1-slant helices, timelike B2-slant helices
in four dimensional semi-Euclidean space, R4

2. And then we obtain an

approximate solution for the timelike B1 slant helix with Taylor matrix

collocation method.

1. Introduction

The curves are the common denominator of many different vital necessities
such as nature, art, technology and science. It is geometrically important to
describe the behavior of the curve in the vicinity a point on the curve. For this,
we introduce a frame of mutually orthogonal vectors and curvatures. Thanks
to these curvatures and frames that are shaped differently in different spaces,
the curves become special. A helix in E3 is a curve whose tangent vector make
a constant angle with a fixed direction (the axis of the helix) [18]. On the other
hand, the curves are usually expressed in parametric forms, and arc length
of the curve is used for the parameter because of its simplicity of expression,
but for practical uses the parameter is changed from arc length s to a more
manageable variable parameter t which monotonically increases with arc length
[8].

There are many studies about the helices we have discussed in this study
[14]. Izumiya and Takeuchi gave a characterization of slant helices [9]. Kula

and Yaylı investigated spherical images of a slant helix [12]. In 2008, Önder et
al. defined a new kind of slant helix in Euclidean 4-space E4 and it is called
B2-slant helix [15]. In 2009, Gök et al. generalized the slant helices of E3 to
En, n > 3, which they called them Vn-slant helix and they gave some char-
acterizations of Vn-slant helix in Euclidean n-space En [7]. Altunkaya found
position vectors of non-null helices in the n-dimensional Minkowski spacetime
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[2]. Kahraman et al. studied quaternionic slant helices which they called
semi-real quaternionic B2-slant helix in E4

2 [10]. On the other hand, differ-
ent approximate solution methods based on matrices for differential equations
characterizing special curves were presented by Aydın et al [4], [5]. In addi-
tion, the issue of investigating the existence of solutions of different types of
equations is still up to date [3], [13].

2. Preliminaries

To meet the requirements in the next sections, the basic elements of the
theory of curves in the semi Euclidean space R4

2 are briefly presented in this
section. A more complete elementary information can be found in [16].

The semi-Euclidean space R4
2 is an Euclidean space provided with standard

flat metric given by

g = −da21 − da22 + da23 + da24,

where (a1, a2, a3, a4) is a rectangular coordinate system of the R4
2. A vector

w in R4
2 is called a spacelike, timelike or null (lightlike) if hold g(w,w) > 0,

g(w,w) < 0 or g(w,w) = 0 and w ̸= 0, respectively. The norm of a vector w is

given by ∥w∥ =
√
|g(w,w)|. Therefore, w is a unit vector if g(w,w) = ±1. Two

vectors u and w are said to be orthogonal if g(u,w) = 0 [16]. Also, let u and w
be two timelike vectors in R4

2. Then there is unique real number 0 < θ < 2π,
called angel between u and w, such that

i) if u and w are spacelike, g(u,w) = ∥u∥ ∥w∥ cos θ,
ii) if u and w are timelike, g(u,w) = −∥u∥ ∥w∥ cosh θ,
iii) if u is spacelike and w is timelike, |g(u,w)| = ∥u∥ ∥w∥ sinh θ.
Similarly, an arbitrary curve γ = γ(s) in R4

2 can locally be spacelike, timelike
or null (lightlike) if all of its velocity vectors γ′(s) are, respectively, spacelike,
timelike or null (lightlike). The velocity of the curve γ is given by ∥γ′∥. Thus, a
timelike curve γ is said to be parametrized by arc length function s if g(γ′, γ′) =
−1 [16].

Let {T (s), N(s), B1(s), B2(s)} denote the moving Frenet frame along γ in
the semi-Euclidean space R4

2. Then T (s), N(s), B1(s) and B2(s) are called
the tangent, the principal normal, the first binormal, and the second binormal
vector fields of γ, respectively.

A unit speed curve γ is said to be a Frenet curve if g(γ′′, γ′′) ̸= 0. Let γ be
a C∞ special timelike Frenet curve with timelike principal normal, spacelike
both first binormal and second binormal vector fields in R4

2, parametrized by
arc length function s. Moreover, non-zero C∞ scalar functions κ1, κ2 and κ3

are the first, second, and third curvatures of γ, respectively. Then for the C∞
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special timelike Frenet curve γ, the Frenet formula is given by

(1)

T ′ = −κ1N
N ′ = κ1T + κ2B1

B′
1 = κ2N + κ3B2

B′
2 = −κ3B1,

where T,N,B1 and B2 mutually orthogonal vector fields satisfying

(2) g(T, T ) = g(N,N) = −1, g(B1, B1) = g(B2, B2) = 1

(for the semi-Euclidean space En+1
v , see [19],[6]).

Definition 2.1. If the tangent vector T of a curve makes a constant angle
with a unit vector U of E4, then this curve is called a general helix (or inclined
curve ) in E4 [17].

Definition 2.2. A Frenet curve of rank d for which κ1, κ2, . . . , κd−1, are
constant is called (generalized) helix or W -curve [11].

Definition 2.3. A unit speed curve γ : I → E4 is called slant helix if its
unit principal normal vector N makes a constant angle with a fixed direction
U [1].

Definition 2.4. Let’s consider the differential equation below:
m∑

k=0

Pk(s)y
(k)(s) = g(s), (a ≤ s ≤ b).

Obviously this is a linear differential equation of order m with variable coeffi-
cient. Also, the functions are differentiable functions in the range a ≤ s ≤ b.
The Taylor matrix collocation method is developed to find approximate solu-
tions of this equation under certain initial or boundary conditions. Accordingly,
the approximate solution can be expressed with Taylor polynomials as follows:

y(s) ∼= yN (s) =

N∑
n=0

ans
n, (N ≥ m),

where the coefficients an are defined as Taylor coefficients that must be found.
The basis of this method is based on the reduction of the unknown function y(s)
to an algebraic system with Taylor coefficient an. For this reduction process,
the matrix form of the function y(s) and the collocation points

si = a+
b− a

N
i, (i = 0, 1, ..., N)

are used. Thus, the problem of finding the approximate solutions of a given dif-
ferential equation or other functional equations becomes the problem of finding
the solution of an algebraic matrix equation [4].
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3. Timelike Curves in R4
2

In this section, we give definitions and characterizations of the timelike
curves by using Frenet frame in R4

2.

Theorem 3.1. Let γ : I → R4
2 be a curve parameterized by arclength.

Then, the curve γ is the timelike curve if and only if

(3) T (4) + λ3T
(3) + λ2T

′′ + λ1T
′ + λ0T = 0.

The coefficient functions λi(s), (0 ≤ i ≤ 3) are as follows:

λ0 = κ1κ2κ3

[
1

κ3
(
κ1

κ2
)′
]′

+ κ2
1κ

2
3,

λ1 = κ1κ2κ3

{[
1

κ2κ3
(
1

κ1
)′′
]′

+ (
κ2
1 − κ2

2

κ1κ2κ3
)′

}
+ κ1κ

2
3(

1

κ1
)′ + κ1κ2(

κ1

κ2
)′,

λ2 = κ1κ2κ3

{[
1

κ3
(

1

κ1κ2
)′
]′

+

[
1

κ2κ3
(
1

κ1
)′
]′}

+ κ1(
1

κ1
)′′ + κ2

1 − κ2
2 + κ2

3,

λ3 = κ1κ2κ3(
1

κ1κ2κ3
)′ + κ1κ2(

1

κ1κ2
)′ + κ1(

1

κ1
)′.(4)

Proof. By using the equations 1 we have

N = − 1

κ1
T ′,

B1 =
1

κ2
N ′ − κ1

κ2
T,

B2 =
1

κ3
B′

1 −
κ2

κ3
N.(5)

From the first of the equations 5 N ′ = − 1
κ1
T ′′ − ( 1

κ1
)′T ′, and so we get

(6) B1 = − 1

κ1κ2
T ′′ − 1

κ2
(
1

κ1
)′T ′ − κ1

κ2
T.

And then we calculate B′
1. With a similar thinking, by using the equations we

found, we get B2 and B′
2. Finally, we use the equality 6 and the expression B′

2

in the last equality of Frenet equations 1. Thus the proof is complete.

Corollary 3.2. The equation 3 is the differential equation characterizing
the timelike curves according to the tangent T field in R4

2. Similarly, the
timelike curves can be characterized according to the principal normal N , the
first binormal B1 and the second binormal B2 fields.
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3.1. Timelike Helix in R4
2

Theorem 3.3. Let γ = γ(s) : I ⊂ R → R4
2 be a regular timelike curve

parametrized by arc length s. Then γ is a timelike W - curve or timelike helix
if and only if the equality

T (4) + (κ2
1 − κ2

2 + κ2
3)T

(2) + (κ2
1κ

2
3)T = 0

holds.

Proof. A timelike curve γ : I → R4
2 parameterized by arc length provides

the differential equation 3 in R4
2. Since the curve γ is (generalized) helix or

W -curve for which κ1, κ2, κ3 are constant, with the help of the equations 4 the

equalities

λ0 = κ2
1κ

2
3,

λ2 = κ2
1 − κ2

2 + κ2
3

and λ1 = λ3 = 0 are obtained.

3.2. Timelike Slant Helix in R4
2

Theorem 3.4. Let γ : I → R4
2 be a regular timelike curve given with arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike slant helix, then
their position vector satisfies the equation

(7)
κ2
1 − κ2

2

κ1κ2κ3
µ′′
1+[(

κ1

κ2κ3
)′−(

κ2

κ1κ3
)′+

1

κ3
(
κ1

κ2
)′]µ′

1+[(
1

κ3
(
κ1

κ2
)′)′+

κ1κ3

κ2
]µ1 = 0,

where µ1 is the coefficient function of the tangent of a constant vector taken in
the fixed direction studied.

Proof. We call γ as timelike slant helix if its principial normal vector makes
a constant angle with a fixed direction. From this definition of the slant helix
we can write

(8) g(N,U) = − cosh θ,

where U is a timelike constant vector and we can compose U as

(9) U = µ1T + µ2N + µ3B1 + µ4B2.

The coefficient functions are

µ1 = −g(T,U), µ2 = −g(N,U), µ3 = g(B1, U), µ4 = g(B2, U).

Because the vector U is constant, by differentiating the equation 9 and consid-
ering Frenet equations we have
(10)
(µ′

1+κ1µ2)T+(−κ1µ1+µ′
2+κ2µ3)N+(κ2µ2+µ′

3−κ3µ4)B1+(κ3µ3+µ′
4)B2 = 0.
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Also, the function µ2 is constant with value cosh θ from the equality 8, and so
µ′
2(s) = 0 for all s. Then we find the following system of ordinary differential

equations

µ′
1 + κ1µ2 = 0,

−κ1µ1 + κ2µ3 = 0,

κ2µ2 + µ′
3 − κ3µ4 = 0,

κ3µ3 + µ′
4 = 0.(11)

From the third equation of the equation system 11 µ4 = κ2

κ3
µ2 +

1
κ3
µ′
3, and so

we get

(12) [
κ2

κ3
µ2 +

1

κ3
µ′
3]

′ = −κ3µ3.

By using the equalities µ2 = − 1
κ1
µ′
1 and µ3 = κ1

κ2
µ1 in the equation 12, we

obtain the equation 7 . Thus the proof is complete.

Corollary 3.5. The equation 7 is the differential equation characterizing
the timelike slant helix according to the coefficient function µ1 in R4

2. Obvi-
ously, the timelike slant helix can be characterized similarly according to the
other coefficient functions µ3 and µ4,but, since µ2 is already fixed, a charac-
terization based on µ2 cannot be given.

Theorem 3.6. Let γ : I → R4
2 be a regular timelike curve given by arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike slant helix, then
their position vector satisfies the equations

κ2
1 − κ2

2

κ2
1κ3

µ′′
3 + [(

κ2
1 − κ2

2

κ2
1κ3

)′ − κ2

κ1κ3
(
κ2

κ1
)′]µ′

3 + {κ3 − [
κ2

κ3κ1
(
κ2

κ1
)′]′}µ3 = 0,

κ2
1 − κ2

2

κ1κ2κ3
µ′′
4 + [

κ1

κ2
(
1

κ3
)′ − (

κ2

κ1κ3
)′]µ′

4 +
κ1κ3

κ2
µ4 = 0,

where µ3 and µ4 are the coefficient functions of the first binormal B1 and the
second binormal B2, respectively, of a timelike constant vector taken in the
fixed direction studied.

Proof. It is obvious from proof of Theorem 3.4.

3.3. Timelike B1-Slant Helix in R4
2

Theorem 3.7. Let γ : I → R4
2 be a regular timelike curve given by arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike B1 slant helix,
then their position vector satisfies the equation

(13)
κ2
3 − κ2

2

κ2
1κ

2
3

µ′′
1 + [

1

κ1
(
1

κ1
)′ − κ2

κ1κ3
(

κ2

κ1κ3
)′]µ′

1 + µ1 = 0,
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where µ1 is the coefficient function of the tangent of a constant vector taken in
the fixed direction studied.

Proof. We call γ as B1 slant helix if its first binormal vector makes a con-
stant angle with a fixed direction. From this definition of the B1 slant helix,
we can write

(14) |g(B1, U)| = sinh θ,

where U is a timelike constant vector and we can compose U as

(15) U = µ1T + µ2N + µ3B1 + µ4B2.

The coefficient functions are

µ1 = −g(T,U), µ2 = −g(N,U), µ3 = g(B1, U), µ4 = g(B2, U)

in R4
2. Because the vector U is constant, differentiation of the equation 15 and

considering Frenet equations, we have
(16)
(µ′

1+κ1µ2)T+(−κ1µ1+µ′
2+κ2µ3)N+(κ2µ2+µ′

3−κ3µ4)B1+(κ3µ3+µ′
4)B2 = 0.

Also, the function µ3 is constant with value sinh θ from the equality 14, and so
µ′
3(s) = 0 for all s. Then we find the following system of ordinary differential

equations

µ′
1 + κ1µ2 = 0,

−κ1µ1 + µ′
2 + κ2µ3 = 0,

κ2µ2 − κ3µ4 = 0,

κ3µ3 + µ′
4 = 0.(17)

From the second equation of this equation system, the equality

(18) µ3 =
κ1

κ2
µ1 −

1

κ2
µ′
2

is obtained. By using the equalities µ2 = − 1
κ1
µ′
1, µ3 = − 1

κ3
µ′
4 and µ4 = κ2

κ3
µ2

in the equation 18, we obtain the equation 13. Thus the proof is complete.

Corollary 3.8. The equation 13 is the differential equation characteriz-
ing the timelike B1 slant helix according to the coefficient function µ1 in R4

2.
Obviously, the timelike B1 slant helix can be characterized similarly according
to the other coefficient functions µ2 and µ4,but, since µ3 is already fixed, a
characterization based on µ3 cannot be given.

Theorem 3.9. Let γ : I → R4
2 be a regular timelike curve given by arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike B1 slant helix,
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then their position vector satisfies the equations

κ2
3 − κ2

2

κ1κ2
3

µ′′
2 + [−(

κ2
2

κ1κ2
3

)′ − κ2

κ1κ3
(
κ2

κ3
)′ + (

1

κ1
)′]µ′

2 − {
[

κ2

κ1κ3
(
κ2

κ3
)′
]′

+ κ1}µ2 = 0,

κ2
3 − κ2

2

κ1κ2κ3
µ′′
4 + [(

κ2
3 − κ2

2

κ1κ2κ3
)′ +

1

κ1
(
κ3

κ2
)′]µ′

4 + {
[
1

κ1
(
κ3

κ2
)′
]′

+
κ1κ3

κ2
}µ4 = 0,

where µ2 and µ4 are the coefficient functions of the principal normal N and
the second binormal B2, respectively, of a timelike constant vector taken in the
fixed direction studied.

Proof. It is obvious from proof of Theorem 3.7.

3.4. Timelike B2 Slant Helix in R4
2

Theorem 3.10. Let γ : I → R4
2 be a regular timelike curve given by arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike B2 slant helix,

i) and if κ3 = 0, µ3 ̸= 0 their position vector satisfies the equation
(19)

µ′′′
1 +[κ1κ2(

1

κ1κ2
)′+κ1(

1

κ1
)′]µ′′

1+{κ1κ2[
1

κ2
(
1

κ1
)′]′+κ2

1−κ2
2}µ′

1+κ1κ2(
κ1

κ2
)′µ1 = 0

and the curve γ lies in a three-dimensional subspace of the R4
2, where µ1 is

the coefficient function of the tangent of a constant vector taken in the fixed
direction studied .

ii) and if κ3 ̸= 0, µ3 = 0, the coefficient functions of the tangent of the
timelike constant vector U satisfy the equalities

µ4 = c,

µ1 =
1

κ1
(
κ3

κ2
)′c,(20)

µ2 =
κ3

κ2
c,

where c is constant.

iii) and if κ3 = 0, µ3 = 0, their position vector satisfy the equation

(21) µ′′
1 + κ1(

1

κ1
)′µ′

1 + κ2
1µ1 = 0,

for µ2 ̸= 0, and the curve γ is planar. Also, the timelike constant vector U is
in the subspace of R4

2.
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Proof. We call γ as B2 slant helix if its first binormal vector makes a con-
stant angle with a fixed direction. From this definition of the B2 slant helix,
we can write

(22) |g(B2, U)| = sinh θ,

where U is a timelike constant vector and we can compose U as

(23) U = µ1T + µ2N + µ3B1 + µ4B2.

The coefficient functions are

µ1 = −g(T,U), µ2 = −g(N,U), µ3 = g(B1, U), µ4 = g(B2, U)

in R4
2. Because the vector U is constant, by differentiating of the equation 23

and considering Frenet equations we have
(24)
(µ′

1+κ1µ2)T+(−κ1µ1+µ′
2+κ2µ3)N+(κ2µ2+µ′

3−κ3µ4)B1+(κ3µ3+µ′
4)B2 = 0.

Also, the function µ4 is constant with value sinh θ from the equality 22, and so
µ′
4(s) = 0 for all s. Then, we find the following system of ordinary differential

equations

µ′
1 + κ1µ2 = 0,

−κ1µ1 + µ′
2 + κ2µ3 = 0,

κ2µ2 + µ′
3 − κ3µ4 = 0,

κ3µ3 = 0,(25)

where i) if κ3 = 0, µ3 ̸= 0, then the equation system 25 is obtained as

µ′
1 + κ1µ2 = 0,

−κ1µ1 + µ′
2 + κ2µ3 = 0,(26)

κ2µ2 + µ′
3 = 0.

We obtain the equation 19, using the equalities µ2 = − 1
κ1
µ′
1 and µ3 = κ1

κ2
µ1 −

1
κ2
µ′
2, in the last equation of this system. Since κ3 = 0, the curve γ lies in a

three-dimensional subspace of R4
2.

ii) if κ3 ̸= 0, µ3 = 0, then the equation system 25 is obtained as

µ′
1 + κ1µ2 = 0,

−κ1µ1 + µ′
2 = 0,

κ2µ2 − κ3µ4 = 0.

We obtain the equalities 20, using the equality µ4 = c in this system.
iii) if κ3 = 0, µ3 = 0, then the equation system 25 is obtained as

µ′
1 + κ1µ2 = 0,

−κ1µ1 + µ′
2 = 0,(27)

κ2µ2 = 0.
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We obtain κ2 = 0 for µ2 ̸= 0, and so the curve γ is planar. Also, we get the
equality 21 from the equation system 27.

Corollary 3.11. The equation 19 is the differential equation characteriz-
ing the timelike B2 slant helix according to the coefficient function µ1 in R4

2.
Obviously, the timelike B2 slant helix can be characterized similarly according
to the other coefficient functions µ2 and µ3,but, since µ4 is already fixed, a
characterization based on µ4 cannot be given.

Theorem 3.12. Let γ : I → R4
2 be a regular timelike curve given by arc-

length parameter s and {T (s), N(s), B1(s), B2(s)} be the moving Frenet frame
at the point γ(s) of the curve γ. If the curve γ is a timelike B2 slant helix and
if κ3 = 0, µ3 ̸= 0, then their position vector satisfies the equations

1
κ1

(κ2

κ1
)′
µ′′′
2 + [(

1
κ1

(κ2

κ1
)′
)′ +

( 1
κ1
)′

(κ2

κ1
)′
]µ′′

2 + [(
( 1
κ1
)′

(κ2

κ1
)′
)′ +

κ2
1−κ2

2

κ1

(κ2

κ1
)′

]µ′
2+

[(

κ2
1−κ2

2

κ1

(κ2

κ1
)′

)′ − κ2]µ2 = 0,

µ′′′
3 + [κ1κ2(

1

κ1κ2
)′ + κ2(

1

κ2
)′]µ′′

3 + {κ1κ2[
1

κ1
(
1

κ2
)′]′ − κ2

1 − κ2
2}µ′

3−

κ1κ2(
κ2

κ1
)′µ3 = 0,

and the curve γ lies in a three-dimensional subspace of the R4
2, where µ2 and µ3

are the coefficient functions of the principal normalN and the first binormal B1,
respectively, of a timelike constant vector taken in the fixed direction studied.

Proof. It is obvious from proof of Theorem 3.10.

4. Approximate solution with Taylor polynomial approach

Firstly, the differential equation 13 is generally expressed as follows: In this
section, the approximate solution of the differential equation 13 that charac-
terizes the timelike B1 slant helix based on the coefficient µ1, will be obtained
by the Taylor matrix collocation method [4]. A similar solution can be applied
for the characterizations linked to the coefficients µ2 and µ4. Also, since the
solution method is valid for all linear differential equations with variable coef-
ficient, it is obviously applicable to all characterizations of the timelike slant
helix and the timelike B2 slant helix.

Firstly, the differential equation 13 is generally expressed as follows:

(28)

2∑
k=0

Pk(s)y
(k)(s) = g(s),
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for the coefficient functions

P2(s) =
κ2
3 − κ2

2

κ2
1κ

2
3

,

P1(s) =
1

κ1
(
1

κ1
)′ − κ2

κ1κ3
(

κ2

κ1κ3
)′,

P0(s) = 1, y(s) = µ1(s), g(s) = 0.

Suppose that this equation has an approximate solution in (0 ≤ s ≤ 1), under
the initial conditions y(k)(0) = ωk, (k = 0, 1), in the form of Taylor polynomials
as

(29) y(s) =

N∑
n=0

ans
n(s).

Let N = 3 for convenience. Here, Pk and g functions are known functions and
ω is suitable constant, an are unknown coefficients, y(s) can be expanded to
Taylor series about s = 0 in the form, for N ≥ 3.

4.1. Basic matrix relations

First of all, the approximate solution can be converted into matrix form
y(s) = S(s)A with

S(s) =
[
1 s s2 s3

]
, A =

[
a0 a1 a2 a3

]T
for N = 3. Also, it is clearly seen that the relation between the matrix S(s) and
its derivative S′(s) is S′(s) = S(s)B and that repeating the process S(k)(s) =
S(s)Bk, where

B =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


and B0 is unite matrix. y(k)(s) = S(s)BkA are obtained with the help of
these matrices. Also, the matrix relations of the differential part are obtained

in the form
2∑

k=0

PkY
(k) = G by using standard collocation points si = 1

3 i

(i = 0, 1, 2, 3), in the equation 28, in the range of 0 ≤ s ≤ 1 for N = 3. The
matrices

Pk = diag[ Pk(0) Pk(
1
3 ) Pk(

2
3 ) Pk(1) ],

Y (k) = [ y(k)(0) y(k)( 13 ) y(k)( 23 ) y(k)(1) ]T

are obvious and the matrix W =
2∑

k=0

PkS(s)B
k is calculated, for WA = G and

the equation is written as the augmented matrix [W ;G].
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4.2. Matrix calculations for initial conditions

Under the initial conditions given as y(0) = 0, y′(0) = 1 the matrix expres-
sion of the conditions is calculated as

U0 =
[
1 0 0 0

]
, U1 =

[
0 1 0 0

]
.

4.3. The Solution

If the matrix form of conditions is used in the matrix form [W ;G] the
following matrix is obtained:

[W ∗;G∗] =


P0(0) P1(0) 2P2(0) 0 ; 0
1 0 0 0 ; 0
0 1 0 0 ; 1

P0(1) ζ31 ζ32 ζ33 ; 0

 ,

where

ζ31 = P0(1) + P1(1),

ζ32 = P0(1) + 2P1(1) + 2P2(1),

ζ33 = P0(1) + 3P1(1) + 6P2(1).

Finally, with the help of equality A = (W ∗)−1G, the unknowns an are calcu-
lated as follows:

a0 = 0, a1 = 1,

a2 = − P1(0)

2P2(0)
,

a3 =
P1(0)[P0(1) + 2P1(1) + 2P2(1)]− 2P2(0)[P0(1) + P1(1)]

2P2(0)[P0(1) + 3P1(1) + 6P2(1)]
.

If these values are substituted in the equation 29, the solution is obtained as
follows:

y(s) = µ1(s) = s+ a2s
2 + a3s

3.

Corollary 4.1. The equations found for the special curves we study are
generally homogeneous, linear differential equations with variable coefficients.
So this solution method we present can be applied to other equations as well.

Example 4.2. Let’s find the coefficient µ1 for the timelike semi-B1 slant
helix given with its curvatures κ1 = 1

s+1 ,
κ2

κ3
= sin s. The vector position of

such a curve provides the following differential equation
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[(1 + s) cos s]2µ′′
1 + {[cos s− (1 + s) sin s](1 + s) cos s}µ′

1 + µ1 = 0.

If the method presented is applied for

P2(s) = [(1 + s) cos s]2,

P1(s) = [cos s− (1 + s) sin s](1 + s) cos s,

P0(s) = 1, y(s) = µ1(s), g = 0,

the approximate solution is calculated under the initial conditions given as
y(0) = 0, y′(0) = 1, in the range of 0 ≤ s ≤ 1 for N = 3. Firstly, from the
matrix

(W ∗)−1 =


0 1.0 0 0
0 0 1.0 0
0.5 −0.5 −0.5 0

−0.100 65 −0.131 79 0.155 20 0.232 44


and A = (W ∗)−1G, the unknowns an are calculated as follows:

a0 = 0,

a1 = 1.0,

a2 = −0.5,

a3 = 0.155 20.

Thus, the solution is obtained as

µ(s) = 0.155 20s3 − 0.5s2 + s.

5. Conclusion

In this study, the characterizations are given for the timelike curves accord-
ing to the Frenet frame in R4

2. In addition, the timelike slant helix, the timelike
B1 slant helix and the timelike B2 slant helix concepts are defined in R4

2 and
the differential equations for vector positions are presented. These equations
are homogeneous, linear, differential equations with variable coefficients. The
Taylor matrix collocation method is given for the approximate solution of such
differential equations. This method is applied in the differential equation that
characterizes the timelike B1 slant helix. And an example is presented.
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[3] R. Ayazoğlu, S. Ş. Şener, and T. A. Aydın, Existence of solutions for a resonant problem
under Landesman-Lazer type conditions involving more general elliptic operators in

divergence form, Trans. Nat. Aca. Sci. Azer. Ser. Phys.-tech. Math. Sci. 40 (2020),

1–14.
[4] T. A. Aydın and M. Sezer, Taylor-Matrix Collocation Method to Solution of Differential

Equations Characterizing Spherical Curves in Euclidean 4-Space, Celal Bayar Uni. J.

Sci. 15 (2019), 1–7.
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