DOI QR코드

DOI QR Code

PROPER BI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLDS ARE PARA-KAEHLER MANIFOLDS

  • Received : 2022.02.15
  • Accepted : 2022.06.13
  • Published : 2022.09.01

Abstract

In this paper, bi-slant pseudo-Riemannian submersions from para-Kaehler manifolds onto pseudo-Riemannian manifolds are introduced. We examine some geometric properties of three types of bi-slant submersions. We give non-trivial examples of such submersions. Moreover, we obtain curvature relations between the base space, total space and the fibers.

Keywords

References

  1. M. A. Akyol and R. Sari, On semi-slant ξ -Riemannian submersions, Mediterr. J. Math. 14 (2017), no. 6, 1-20. https://doi.org/10.1007/s00009-016-0833-2
  2. M. A. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods. Mod. Phys. 14 (2017), no. 7, 1750114. https://doi.org/10.1142/S0219887817501146
  3. M. A. Akyol and B. Sahin, Conformal slant submersions, Hacettepe Journal of Mathematics and Statistics, 48 (2019), no. 1, 28-44.
  4. M. A. Akyol and Y. Gunduzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4 (2016), no. 3, 15-27.
  5. P. Alegre, Slant submanifolds of para-Hermitian manifolds, Complex Geometry of Slant Submanifolds. Springer, Singapore, (2022), 139-159.
  6. P. Alegre and A. Carriazo, Bi-slant submanifolds of para-Hermitian manifolds, Mathematics 7 (2019), no. 7, 618. https://doi.org/10.3390/math7070618
  7. G. Baditoiu and S. Ianus, Semi-Riemannian submersions from real and complex pseudohyperbolic spaces, Diff. Geom. and Appl. 16 (2002), no. 1, 79-94. https://doi.org/10.1016/S0926-2245(01)00070-5
  8. A. Carriazo, Bi-slant immersions, Proc. ICRAMS 2000 (2000), 88-97.
  9. I. K. Erken and C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc. 51 (2014), no. 6, 1749-1771. https://doi.org/10.4134/BKMS.2014.51.6.1749
  10. M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific, 2004.
  11. P. Gilkey, M. Itoh, and J. H. Park, Anti-invariant Riemannian submersions: A Lietheoretical approach, Taiwanese J. Math. 20 (2016), no. 4, 787-800.
  12. Y. Gunduzalp, Slant submersions in paracontact geometry, Hacet. J. Math. Stat. 49 (2020), no. 2, 822-834. https://doi.org/10.15672/hujms.458085
  13. Y. Gunduzalp, Almost para-Hermitian submersions, Matematicki Vesnik 68 (2016), no. 4, 241-253.
  14. Y. Gunduzalp, Anti-invariant semi-Riemannian submersions from almost paraHermitian manifolds, Journal of Function Spaces and Applications 2013 (2013), Article ID 720623.
  15. Y. Gunduzalp, Anti-invariant Pseudo-Riemannian Submersions and Clairaut Submersions from Paracosymplectic Manifolds, Mediterr. J. Math. 16 (2019), no. 4, 1-18. https://doi.org/10.1007/s00009-019-1359-1
  16. Y. Gunduzalp, Neutral slant submersions in paracomplex geometry, Afrika Matematika 32 (2021), no. 5, 1095-1110. https://doi.org/10.1007/s13370-021-00884-8
  17. Y. Gunduzalp and M. A. Akyol, Conformal slant submersions from cosymplectic manifolds, Turk. J. Math. 42 (2018), no. 5, 2672-2689. https://doi.org/10.3906/mat-1803-106
  18. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), no. 7, 715-737.
  19. S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
  20. S. Ianus, G. E. Vilcu, and R. C. Voicu, Harmonic maps and Riemannian submersions between manifolds endowed with special structures, Banach Center Publications 93 (2011), 277-288. https://doi.org/10.4064/bc93-0-23
  21. S. Ivanov and S. Zamkovoy, Para-Hermitian and para-quaternionic manifolds, Diff. Geom. and Its Appl. 23 (2005), no. 2, 205-234. https://doi.org/10.1016/j.difgeo.2005.06.002
  22. J. W. Lee and B. Sahin, Pointwise slant submersions, Bull. Korean Math. Soc. 51 (2014), no. 4, 1115-1126. https://doi.org/10.4134/BKMS.2014.51.4.1115
  23. C. W. Lee, J. W. Lee, B. Sahin, and G. E. Vilcu, Optimal inequalities for Riemannian maps and Riemannian submersions involving Casorati curvatures, Annali di Matematica 200 (2021), no. 3, 1277-1295. https://doi.org/10.1007/s10231-020-01037-7
  24. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), no. 4, 459-469. https://doi.org/10.1307/mmj/1028999604
  25. F. Ozdemir, C. Sayar, and H. M. Tastan, Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae 40 (2017), no. 7, 909-926. https://doi.org/10.2989/16073606.2017.1335657
  26. K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. https://doi.org/10.4134/BKMS.2012.49.2.329
  27. K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
  28. R. Prasad, S. S. Shukla, and S. Kumar, On Quasi-bi-slant submersions, Mediterr. J. Math. 16 (2019), no. 6, Article number: 155 (2019).
  29. R. Prasad, M. A. Akyol, S. Kumar, and P. K. Singh, Quasi bi-slant submersions in contact geometry, CUBO Mathematical Journal 24 (2022), no. 1, 1-20. https://doi.org/10.4067/S0719-06462022000100001
  30. R. Prasad, M. A. Akyol, P. K. Singh and S. Kumar, On Quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, Journal of Mathematical Extension 16 (2022), no. 6, 1-25.
  31. R. Prasad, M. A. Akyol, S. K. Verma and S. Kumar, Quasi bi-slant submanifolds from Kaehler manifolds, International Electronic Journal of Geometry 15 (2022), no. 1, 57-68. https://doi.org/10.36890/iejg.1061786
  32. M. Prvanovicc, Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195-213.
  33. B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome. 54 (2011), 93-105.
  34. B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Open Mathematics 8 (2010), no. 3, 437-447.
  35. B. Sahin, Semi-invariant Submersions from Almost Hermitian Manifold, Canadian Mathematical Bulletin 56 (2013), no. 1, 173-183. https://doi.org/10.4153/CMB-2011-144-8
  36. B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications Elsevier, Academic Press, 2017.
  37. B. S. ahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2013), no. 2, 629-659.
  38. R. Sari and M. A. Akyol Hemi-slant ξ-Riemannian submersions in contact geometry, Filomat 34 (2020), no. 11, 3747-3758. https://doi.org/10.2298/FIL2011747S
  39. C. Sayar, M. A. Akyol, and R. Prasad, Bi-slant submersions in complex geometry, International Journal of Geometric Methods in Modern Physics 17 (2020), no. 4, 2050055. https://doi.org/10.1142/S0219887820500553
  40. S. A. Sepet and M. Ergut, Pointwise slant submersions from cosymplectic manifolds, Turkish J. Math. 40 (2016), no. 3, 582-593. https://doi.org/10.3906/mat-1503-98
  41. H. M. Tastan, B. Sahin and S. Yanan, Hemi-slant submersions, Mediterr. J. Math. 13 (2016), no. 4, 2171-2184. https://doi.org/10.1007/s00009-015-0602-7
  42. G. E. Vilcu, Almost product structures on statistical manifolds and para-Kahler-like statistical submersions, Bulletin des Sciences Mathematiques 171 (2021), 103018. https://doi.org/10.1016/j.bulsci.2021.103018
  43. B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147-165. https://doi.org/10.4310/jdg/1214433303