DOI QR코드

DOI QR Code

An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes

  • Received : 2022.06.09
  • Accepted : 2022.07.18
  • Published : 2022.09.30

Abstract

Objectives: In recent decades, the trend for treating diabetes mellitus (DM) has shifted toward alternative medicines that are obtained from plant sources. Existing literature suggests that phenolic compounds derived from plants possess promising health-promoting properties. This study aimed to discuss the role of plant-derived phenolic compounds in the effective treatment and management of diabetes. Methods: Information about plant secondary metabolites, phenolic compounds, and their role in the treatment and management of diabetes was collected from different databases, such as Pubmed, ScienceDirect, Scopus, and Google Scholar. Keywords like secondary metabolites, phenolic compounds, simple phenol, flavonoids, lignans, stilbenes, and diabetes were searched. Research and review articles with relevant information were included in the study. Results: Anti-diabetic studies of the four major classes of phenolic compounds were included in this review. The plant-derived phenolic compounds were reported to have potent anti-diabetic activities. However, each class of phenolic compounds was found to behave differently according to various mechanisms. Conclusion: The obtained results suggest that phenolic compounds derived from natural sources display promising anti-diabetic activities. Based on the available information, it can be concluded that phenolic compounds obtained from various natural sources play key roles in the treatment and management of diabetes.

Keywords

References

  1. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790. https://doi.org/10.1038/s41598-020-71908-9
  2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023
  3. Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850-67. https://doi.org/10.4239/wjd.v6.i6.850
  4. Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol. 2016;12(6):357-70. https://doi.org/10.1038/nrendo.2016.53
  5. Rupashri SV, Gheena S. Recent advances in diabetes research. Res J Pharm Tech. 2016;9(10):1806-8. https://doi.org/10.5958/0974-360X.2016.00366.8
  6. Kamtekar S, Keer V. Management of diabetes: a review. Res J Pharm Tech. 2014;7(9):1065-72.
  7. Salehi B, Ata A, V Anil Kumar N, Sharopov F, Ramirez-Alarcon K, Ruiz-Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):551. https://doi.org/10.3390/biom9100551
  8. Hussein RA, El-Anssary AA. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Builders PF, editor. Herbal medicine. London: IntechOpen; 2019. p. 76139.
  9. Santos-Sanchez NF, Salas-Coronado R, Hernandez-Carlos B, Villanueva-Canongo C. Shikimic acid pathway in biosynthesis of phenolic compounds. In: Soto-Hernandez M, Garcia-Mateos R, Palma-Tenango M, editors. Plant physiological aspects of phenolic compounds. London: IntechOpen; 2019. p. 1-5.
  10. Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374. https://doi.org/10.3390/molecules21101374
  11. Van Hung P. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr. 2016;56(1):25-35. https://doi.org/10.1080/10408398.2012.708909
  12. Golawska S, Sprawka I, Lukasik I, Golawski A. Are naringenin and quercetin useful chemicals in pest-management strategies? J Pest Sci (2004). 2014;87(1):173-80. https://doi.org/10.1007/s10340-013-0535-5
  13. Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sci. 2015;2015:823539.
  14. Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019;24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
  15. Santana-Galvez J, Cisneros-Zevallos L, Jacobo-Velazquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017;22(3):358. https://doi.org/10.3390/molecules22030358
  16. Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol. 2013;85(9):1341-51. https://doi.org/10.1016/j.bcp.2013.02.008
  17. Zheng Y, Yang W, Sun W, Chen S, Liu D, Kong X, et al. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. J Funct Foods. 2020;64:103587. https://doi.org/10.1016/j.jff.2019.103587
  18. Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol. 2015;26(2):165-70.
  19. Wang S, Li Y, Huang D, Chen S, Xia Y, Zhu S. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chem. 2022;372:131334. https://doi.org/10.1016/j.foodchem.2021.131334
  20. Amin MM, Arbid MS. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Appl Physiol Nutr Metab. 2017;42(2):181-92. https://doi.org/10.1139/apnm-2016-0429
  21. Polce SA, Burke C, Franca LM, Kramer B, de Andrade Paes AM, Carrillo-Sepulveda MA. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients. 2018;10(5):531. https://doi.org/10.3390/nu10050531
  22. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr. 2017;56(2):591-601. https://doi.org/10.1007/s00394-015-1103-y
  23. Espindola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019;9:541. https://doi.org/10.3389/fonc.2019.00541
  24. Huang DW, Shen SC. Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes. J Funct Foods. 2012;4(1):358-66. https://doi.org/10.1016/j.jff.2012.01.005
  25. Orsolic N, Sirovina D, Odeh D, Gajski G, Balta V, Sver L, et al. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules. 2021;26(11):3262. https://doi.org/10.3390/molecules26113262
  26. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci. 2019;22(3):225-37.
  27. Huang DW, Chang WC, Wu JS, Shih RW, Shen SC. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 2016;36(2):150-60. https://doi.org/10.1016/j.nutres.2015.10.001
  28. Oboh G, Ogunbadejo MD, Ogunsuyi OB, Oyeleye SI. Can gallic acid potentiate the antihyperglycemic effect of acarbose and metformin? Evidence from streptozotocin-induced diabetic rat model. Arch Physiol Biochem. 2022;128(3):619-27. https://doi.org/10.1080/13813455.2020.1716014
  29. Dias TR, Alves MG, Casal S, Oliveira PF, Silva BM. Promising potential of dietary (Poly)phenolic compounds in the prevention and treatment of diabetes mellitus. Curr Med Chem. 2017;24(4):334-54. https://doi.org/10.2174/0929867323666160905150419
  30. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41
  31. Babu PV, Si H, Fu Z, Zhen W, Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr. 2012;142(4):724-30. https://doi.org/10.3945/jn.111.152322
  32. Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, et al. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulindeficient diabetes in mice. Endocrinology. 2010;151(7):3026-37. https://doi.org/10.1210/en.2009-1294
  33. Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325-32. https://doi.org/10.1016/j.ejphar.2011.08.011
  34. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res. 2014;267:178-88. https://doi.org/10.1016/j.bbr.2014.02.040
  35. Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol. 2012;358(1):127-34. https://doi.org/10.1016/j.mce.2012.03.013
  36. Bak EJ, Kim J, Choi YH, Kim JH, Lee DE, Woo GH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr. 2014;33(1):156-63. https://doi.org/10.1016/j.clnu.2013.03.013
  37. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an antiinflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol. 2014;279(1):1-7. https://doi.org/10.1016/j.taap.2014.05.007
  38. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-12. https://doi.org/10.1016/j.biopha.2017.10.001
  39. Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic effects of resveratrol: the way forward in its clinical utility. J Diabetes Res. 2016;2016:9737483.
  40. Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther. 2006;318(2):476-83. https://doi.org/10.1124/jpet.106.105163
  41. Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag. 2015;11(41):74-81. https://doi.org/10.4103/0973-1296.149708
  42. Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-9. https://doi.org/10.4103/0973-7847.194044
  43. Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, Nistor L, et al. Stimulation of AMPactivated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitisidaea. Mol Nutr Food Res. 2010;54(7):991-1003. https://doi.org/10.1002/mnfr.200900218
  44. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Busselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430. https://doi.org/10.3390/biom9090430
  45. Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol. 2014;52(7):720-7.
  46. Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099-107. https://doi.org/10.1016/j.foodchem.2012.11.139
  47. Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, et al. The flavonoid kaempferol ameliorates streptozotocininduced diabetes by suppressing hepatic glucose production. Molecules. 2018;23(9):2338. https://doi.org/10.3390/molecules23092338
  48. Moore W, Alkhalidy H, Zhou K, Liu D. Flavonol kaempferol improves glucose homeostasis via suppressing hepatic glucose production and enhancing insulin sensitivity in diabetic mice. FASEB J. 2017;31(S1):646.52.
  49. Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem. 2012;12(10):1264-80. https://doi.org/10.2174/187152012803833107
  50. Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013;4(2):200-12. https://doi.org/10.1039/C2FO30199G
  51. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-UlHaq, et al. Chrysin: pharmacological and therapeutic properties. Life Sci. 2019;235:116797. https://doi.org/10.1016/j.lfs.2019.116797
  52. Ramirez-Espinosa JJ, Saldana-Rios J, Garcia-Jimenez S, Villalobos-Molina R, Avila-Villarreal G, Rodriguez-Ocampo AN, et al. Chrysin induces antidiabetic, antidyslipidemic and antiinflammatory effects in athymic nude diabetic mice. Molecules. 2017;23(1):67. https://doi.org/10.3390/molecules23010067
  53. Kim SM, Imm JY. The Effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules. 2020;25(23):5503. https://doi.org/10.3390/molecules25235503
  54. Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-Mariscal I, Carlson OD, et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes. 2013;62(10):3500-13. https://doi.org/10.2337/db13-0266
  55. Barker D. Lignans. Molecules. 2019;24(7):1424. https://doi.org/10.3390/molecules24071424
  56. Draganescu D, Andritoiu C, Hritcu D, Dodi G, Popa MI. Flaxseed lignans and polyphenols enhanced activity in streptozotocin-induced diabetic rats. Biology (Basel). 2021;10(1):43.