References
- Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790. https://doi.org/10.1038/s41598-020-71908-9
- Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023
- Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850-67. https://doi.org/10.4239/wjd.v6.i6.850
- Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol. 2016;12(6):357-70. https://doi.org/10.1038/nrendo.2016.53
- Rupashri SV, Gheena S. Recent advances in diabetes research. Res J Pharm Tech. 2016;9(10):1806-8. https://doi.org/10.5958/0974-360X.2016.00366.8
- Kamtekar S, Keer V. Management of diabetes: a review. Res J Pharm Tech. 2014;7(9):1065-72.
- Salehi B, Ata A, V Anil Kumar N, Sharopov F, Ramirez-Alarcon K, Ruiz-Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):551. https://doi.org/10.3390/biom9100551
- Hussein RA, El-Anssary AA. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Builders PF, editor. Herbal medicine. London: IntechOpen; 2019. p. 76139.
- Santos-Sanchez NF, Salas-Coronado R, Hernandez-Carlos B, Villanueva-Canongo C. Shikimic acid pathway in biosynthesis of phenolic compounds. In: Soto-Hernandez M, Garcia-Mateos R, Palma-Tenango M, editors. Plant physiological aspects of phenolic compounds. London: IntechOpen; 2019. p. 1-5.
- Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10):1374. https://doi.org/10.3390/molecules21101374
- Van Hung P. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr. 2016;56(1):25-35. https://doi.org/10.1080/10408398.2012.708909
- Golawska S, Sprawka I, Lukasik I, Golawski A. Are naringenin and quercetin useful chemicals in pest-management strategies? J Pest Sci (2004). 2014;87(1):173-80. https://doi.org/10.1007/s10340-013-0535-5
- Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sci. 2015;2015:823539.
- Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 2019;24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
- Santana-Galvez J, Cisneros-Zevallos L, Jacobo-Velazquez DA. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017;22(3):358. https://doi.org/10.3390/molecules22030358
- Ong KW, Hsu A, Tan BK. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol. 2013;85(9):1341-51. https://doi.org/10.1016/j.bcp.2013.02.008
- Zheng Y, Yang W, Sun W, Chen S, Liu D, Kong X, et al. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. J Funct Foods. 2020;64:103587. https://doi.org/10.1016/j.jff.2019.103587
- Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol. 2015;26(2):165-70.
- Wang S, Li Y, Huang D, Chen S, Xia Y, Zhu S. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chem. 2022;372:131334. https://doi.org/10.1016/j.foodchem.2021.131334
- Amin MM, Arbid MS. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Appl Physiol Nutr Metab. 2017;42(2):181-92. https://doi.org/10.1139/apnm-2016-0429
- Polce SA, Burke C, Franca LM, Kramer B, de Andrade Paes AM, Carrillo-Sepulveda MA. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients. 2018;10(5):531. https://doi.org/10.3390/nu10050531
- Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr. 2017;56(2):591-601. https://doi.org/10.1007/s00394-015-1103-y
- Espindola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, et al. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol. 2019;9:541. https://doi.org/10.3389/fonc.2019.00541
- Huang DW, Shen SC. Caffeic acid and cinnamic acid ameliorate glucose metabolism via modulating glycogenesis and gluconeogenesis in insulin-resistant mouse hepatocytes. J Funct Foods. 2012;4(1):358-66. https://doi.org/10.1016/j.jff.2012.01.005
- Orsolic N, Sirovina D, Odeh D, Gajski G, Balta V, Sver L, et al. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules. 2021;26(11):3262. https://doi.org/10.3390/molecules26113262
- Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci. 2019;22(3):225-37.
- Huang DW, Chang WC, Wu JS, Shih RW, Shen SC. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res. 2016;36(2):150-60. https://doi.org/10.1016/j.nutres.2015.10.001
- Oboh G, Ogunbadejo MD, Ogunsuyi OB, Oyeleye SI. Can gallic acid potentiate the antihyperglycemic effect of acarbose and metformin? Evidence from streptozotocin-induced diabetic rat model. Arch Physiol Biochem. 2022;128(3):619-27. https://doi.org/10.1080/13813455.2020.1716014
- Dias TR, Alves MG, Casal S, Oliveira PF, Silva BM. Promising potential of dietary (Poly)phenolic compounds in the prevention and treatment of diabetes mellitus. Curr Med Chem. 2017;24(4):334-54. https://doi.org/10.2174/0929867323666160905150419
- Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41
- Babu PV, Si H, Fu Z, Zhen W, Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr. 2012;142(4):724-30. https://doi.org/10.3945/jn.111.152322
- Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, et al. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulindeficient diabetes in mice. Endocrinology. 2010;151(7):3026-37. https://doi.org/10.1210/en.2009-1294
- Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325-32. https://doi.org/10.1016/j.ejphar.2011.08.011
- Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, et al. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res. 2014;267:178-88. https://doi.org/10.1016/j.bbr.2014.02.040
- Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol. 2012;358(1):127-34. https://doi.org/10.1016/j.mce.2012.03.013
- Bak EJ, Kim J, Choi YH, Kim JH, Lee DE, Woo GH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr. 2014;33(1):156-63. https://doi.org/10.1016/j.clnu.2013.03.013
- Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an antiinflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol Appl Pharmacol. 2014;279(1):1-7. https://doi.org/10.1016/j.taap.2014.05.007
- Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-12. https://doi.org/10.1016/j.biopha.2017.10.001
- Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic effects of resveratrol: the way forward in its clinical utility. J Diabetes Res. 2016;2016:9737483.
- Jung UJ, Lee MK, Park YB, Jeon SM, Choi MS. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther. 2006;318(2):476-83. https://doi.org/10.1124/jpet.106.105163
- Eid HM, Nachar A, Thong F, Sweeney G, Haddad PS. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn Mag. 2015;11(41):74-81. https://doi.org/10.4103/0973-1296.149708
- Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84-9. https://doi.org/10.4103/0973-7847.194044
- Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, Nistor L, et al. Stimulation of AMPactivated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitisidaea. Mol Nutr Food Res. 2010;54(7):991-1003. https://doi.org/10.1002/mnfr.200900218
- Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Busselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430. https://doi.org/10.3390/biom9090430
- Niture NT, Ansari AA, Naik SR. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol. 2014;52(7):720-7.
- Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013;138(4):2099-107. https://doi.org/10.1016/j.foodchem.2012.11.139
- Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, et al. The flavonoid kaempferol ameliorates streptozotocininduced diabetes by suppressing hepatic glucose production. Molecules. 2018;23(9):2338. https://doi.org/10.3390/molecules23092338
- Moore W, Alkhalidy H, Zhou K, Liu D. Flavonol kaempferol improves glucose homeostasis via suppressing hepatic glucose production and enhancing insulin sensitivity in diabetic mice. FASEB J. 2017;31(S1):646.52.
- Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem. 2012;12(10):1264-80. https://doi.org/10.2174/187152012803833107
- Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function. Food Funct. 2013;4(2):200-12. https://doi.org/10.1039/C2FO30199G
- Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham-UlHaq, et al. Chrysin: pharmacological and therapeutic properties. Life Sci. 2019;235:116797. https://doi.org/10.1016/j.lfs.2019.116797
- Ramirez-Espinosa JJ, Saldana-Rios J, Garcia-Jimenez S, Villalobos-Molina R, Avila-Villarreal G, Rodriguez-Ocampo AN, et al. Chrysin induces antidiabetic, antidyslipidemic and antiinflammatory effects in athymic nude diabetic mice. Molecules. 2017;23(1):67. https://doi.org/10.3390/molecules23010067
- Kim SM, Imm JY. The Effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules. 2020;25(23):5503. https://doi.org/10.3390/molecules25235503
- Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-Mariscal I, Carlson OD, et al. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes. 2013;62(10):3500-13. https://doi.org/10.2337/db13-0266
- Barker D. Lignans. Molecules. 2019;24(7):1424. https://doi.org/10.3390/molecules24071424
- Draganescu D, Andritoiu C, Hritcu D, Dodi G, Popa MI. Flaxseed lignans and polyphenols enhanced activity in streptozotocin-induced diabetic rats. Biology (Basel). 2021;10(1):43.