참고문헌
- Abdoos, H., Khaloo, A. and Foyouzat, M. (2020), "On the out-ofplane dynamic response of horizontally curved beams resting on elastic foundation traversed by a moving mass", J. Sound Vib., 479, 115397. https://doi.org/10.1016/j.jsv.2020.115397.
- Akin, J.E. and Mofid, M. (1989), "Numerical solution for response of beams with moving mass", J. Struct. Eng., 115, 120-131. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(120).
- Alimoradzadeh, M. and Akbas, S. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81, 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Amiri, J.V., Nikkhoo, A., Davoodi, M.R. and Hassanabadi, M.E. (2013), "Vibration analysis of a Mindlin elastic plate under a moving mass excitation by eigenfunction expansion method", Thin Wall. Struct., 62, 53-64. https://doi.org/10.1016/j.tws.2012.07.014.
- Awodola, T. (2018), "Flexural motion under moving masses of prestressed simply supported plate resting on bi-parametric foundation", J. Theor. Appl. Mech., 48, 3-22. https://doi.org/10.1007/s42417-018-0031-6.
- Bajer, C.I. and Dyniewicz, B. (2012), Numerical Analysis of Vibrations of Structures under moving Inertial Load, Springer Science & Business Media.
- Brogan, W.L. (1991), Modern Control Theory, Pearson Education india.
- Cifuentes, A. and Lalapet, S. (1992), "A general method to determine the dynamic response of a plate to a moving mass", Comput. Struct., 42, 31-36. https://doi.org/10.1016/0045-7949(92)90533-6.
- De Faria, A. and Oguamanam, D. (2004), "Finite element analysis of the dynamic response of plates under traversing loads using adaptive meshes", Thin Wall. Struct., 42, 1481-1493. https://doi.org/10.1016/j.tws.2004.03.012.
- Foyouzat, M., Abdoos, H., Khaloo, A. and Mofid, M. (2022), "Inplane vibration analysis of horizontally curved beams resting on visco-elastic foundation subjected to a moving mass", Mech. Syst. Signal Pr., 172, 109013. https://doi.org/10.1016/j.ymssp.2022.109013.
- Foyouzat, M., Estekanchi, H. and Mofid, M. (2018), "An analytical-numerical solution to assess the dynamic response of viscoelastic plates to a moving mass", Appl. Math. Model., 54, 670-696. https://doi.org/10.1016/j.apm.2017.07.037.
- Foyouzat, M. and Mofid, M. (2019), "An analytical solution for bending of axisymmetric circular/annular plates resting on a variable elastic foundation", Eur. J. Mech.-A/Solid., 74, 462-470. https://doi.org/10.1016/j.euromechsol.2019.01.006.
- Foyouzat, M., Mofid, M. and Akin, J. (2016), "Free vibration of thin circular plates resting on an elastic foundation with a variable modulus", J. Eng. Mech., 142, 04016007. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001050.
- Ghafoori, E. and Asghari, M. (2010), "Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory", Compos. Struct., 92, 1865-1876. https://doi.org/10.1016/j.compstruct.2010.01.011.
- Hassanabadi, M.E., Attari, N.K., Nikkhoo, A. and Baranadan, M. (2015), "An optimum modal superposition approach in the computation of moving mass induced vibrations of a distributed parameter system", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 229, 1015-1028. https://doi.org/10.1177/0954406214542968.
- Hosseini-Hashemi, S. and Khaniki, H.B. (2018), "Three dimensional dynamic response of functionally graded nanoplates under a moving load", Struct. Eng. Mech., 66, 249-262. https://doi.org/10.12989/sem.2018.66.2.249.
- Iwan, W. and Stahl, K. (1973), "The response of an elastic disk with a moving mass system", J. Appl. Mech., 40(2), 445-451. https://doi.org/10.1115/1.3423004.
- Javidi, R., Moghimi Zand, M. and Dastani, K. (2018), "Dynamics of Nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory", J. Comput. Appl. Mech., 49, 27-36. https://doi.org/10.22059/jcamech.2017.238716.169.
- Kanwal, R.P. (1998), Generalized Functions Theory and Technique: Theory and Technique, Springer Science & Business Media.
- Katsikadelis, J. and Kallivokas, L. (1986), "Clamped plates on Pasternak-type elastic foundation by the boundary element method", J. Appl. Mech., 53(4), 909-917. https://doi.org/10.1115/1.3171880.
- Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498 https://doi.org/10.1115/1.3629667.
- Kukla, S. and Szewczyk, M. (2007), "Frequency analysis of annular plates with elastic concentric supports by Green's function method", J. Sound Vib., 300, 387-393. https://doi.org/10.1016/j.jsv.2006.04.046.
- Liew, K.M., Xiang, Y., Kitipornchai, S. and Wang, C. (1998), Vibration of Mindlin Plates: Programming the p-Version Ritz Method, Elsevier.
- Luong-Van, H., Nguyen-Thoi, T., Liu, G. and Phung-Van, P. (2014), "A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEMMIN3) for dynamic response of laminated composite plates on viscoelastic foundation", Eng. Anal. Bound. Elem., 42, 8-19. https://doi.org/10.1016/j.enganabound.2013.11.008.
- Nikkhoo, A., Asili, S., Sadigh, S., Hajirasouliha, I. and Karegar, H. (2019), "A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses", Adv. Comput. Des., 4, 307-326. https://doi.org/10.12989/acd.2019.4.3.307
- Nikkhoo, A., Hassanabadi, M.E., Azam, S.E. and Amiri, J. V. (2014), "Vibration of a thin rectangular plate subjected to series of moving inertial loads", Mech. Res. Commun., 55, 105-113. https://doi.org/10.1016/j.mechrescom.2013.10.009.
- Nikkhoo, A. and Rofooei, F.R. (2012), "Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass", Acta Mechanica, 223, 15-27. https://doi.org/10.1007/s00707-011-0547-2.
- Pasternak, P. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuve i Arkhitekture.
- Rai, A.K. and Gupta, S.S. (2021), "Nonlinear vibrations of a polar-orthotropic thin circular plate subjected to circularly moving point load", Compos. Struct., 256, 112953. https://doi.org/10.1016/j.compstruct.2020.112953.
- Rao, S.S. (2007), Vibration of Continuous Systems, Wiley Online Library.
- Reissner, E. (1958), "A note on deflections of plates on a viscoelastic foundation", J. Appl. Mech., 25, 144-145. https://doi.org/10.1115/1.4011704.
- Seifoori, S., Mahdian Parrany, A. and Darvishinia, S. (2021), "Experimental studies on the dynamic response of thin rectangular plates subjected to moving mass", J. Vib. Control, 27, 685-697. https://doi.org/10.1177/1077546320933136.
- Shadnam, M., Mofid, M. and Akin, J. (2001), "On the dynamic response of rectangular plate, with moving mass", Thin Wall. Struct., 39, 797-806. https://doi.org/10.1016/S0263-8231(01)00025-8.
- Smith, I.M. (1970), "A finite element approach to elastic soil-structure interaction", Can. Geotech. J., 7, 95-105. https://doi.org/10.1139/t70-011.
- Song, Q., Shi, J. and Liu, Z. (2017), "Vibration analysis of functionally graded plate with a moving mass", Appl. Math. Model., 46, 141-160. https://doi.org/10.1016/j.apm.2017.01.073.
- Stanisic, M., Hardin, J. and Lou, Y. (1968), "On the response of the plate to a multi-masses moving system", Acta Mechanica, 5, 37-53. https://doi.org/10.1007/BF01624442.
- Szilard, R. (2004), "Theories and applications of plate analysis: classical, numerical and engineering methods", Appl. Mech. Rev. 57, 45. https://doi.org/10.1115/1.1849175
- Takabatake, H. (1998), "Dynamic analysis of rectangular plates with stepped thickness subjected to moving loads including additional mass", J. Sound Vib., 213, 829-842. https://doi.org/10.1006/jsvi.1998.1555.
- Uzal, E. and Sakman, L.E. (2010), "Dynamic response of a circular plate to a moving load", Acta Mechanica, 210, 351-359. https://doi.org/10.1007/s00707-009-0207-y.
- Von Nanni, J. (1971), "Das eulersche knickproblem unter berucksichtigung der querkrafte", Zeitschrift fur Angewandte Mathematik und Physik ZAMP, 22, 156-185. https://doi.org/10.1007/BF01624060.
- Vosoughi, A., Malekzadeh, P. and Razi, H. (2013), "Response of moderately thick laminated composite plates on elastic foundation subjected to moving load", Compos. Struct., 97, 286-295. https://doi.org/10.1016/j.compstruct.2012.10.017.
- Wang, C. (1994), "Natural frequencies formula for simply supported Mindlin plates", J. Vib. Acoust., 116(4), 536-540. https://doi.org/10.1115/1.2930460.
- Wang, C., Reddy, J.N. and Lee, K. (2000), Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier.
- Wang, C.Y. and Wang, C. (2013), Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates, CRC Press.
- Wang, R.T. and Kuo, N.Y. (1999), "Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate", Struct. Eng. Mech., 8, 151-164. https://doi.org/10.12989/sem.1999.8.2.151.
- Wang, Y., Tham, L. and Cheung, Y. (2005), "Beams and plates on elastic foundations: a review", Prog. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202.
- Winkler, E. (1867), "Die Lehre vonder elastizitat und festigkeit", Do-minicus, Prague.
- Wu, J.S., Lee, M.L. and Lai, T.S. (1987), "The dynamic analysis of a flat plate under a moving load by the finite element method", Int. J. Numer. Meth. Eng., 24, 743-762. https://doi.org/10.1002/nme.1620240407.
- Xing, Y. and Liu, B. (2009), "Closed form solutions for free vibrations of rectangular Mindlin plates", Acta Mechanica Sinica, 25, 689-698. https://doi.org/10.1007/s10409-009-0253-7.
- Zaman, M., Taheri, M.R. and Alvappillai, A. (1991), "Dynamic response of a thick plate on viscoelastic foundation to moving loads", Int. J. Numer. Anal. Meth. Geomech., 15, 627-647. https://doi.org/10.1002/nag.1610150903.