Acknowledgement
The research described in this paper was financially supported by the Russian Foundation of Basic Research 19-31-60035.
References
- AnsysⓇ Academic Research Mechanical APDL, Release 14.0, Help System, Material Reference/3.24, ANSYS, Inc.
- Auricchio, F. and Petrini, L. (2002), "Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations", Int. J. Numer. Methods, 55(11), 1255-1284. https://doi.org/10.1002/nme.619
- Belyaev, S., Rubanik, V., Resnina, N., Rubanik Jr, V., Rubanik, O. and Borisov, V.J.P.T. (2010a), "Martensitic transformation and physical properties of 'steel-TiNi' bimetal composite, produced by explosion welding", Phase Transitions, 83(4), 276-283. https://doi.org/10.1080/01411591003656757
- Belyaev, S., Rubanik, V., Resnina, N., Rubanik Jr, V., Rubanik, O., Borisov, V. and Lomakin, I. (2010b), "Functional properties of bimetal composite of "stainless steel - TiNi alloy" produced by explosion welding", Physics Procedia, 10, 52-57. https://doi.org/10.1016/j.phpro.2010.11.074
- Belyaev, S., Rubanik, V., Resnina, N. and Rubanik, O. (2011), "Effect of annealing on martensitic transformations in "steel - TiNi alloy" explosion welded bimetallic composite", Metal Sci. Heat Treat., 52(9), 432-436. https://doi.org/10.1007/s11041-010-9310-x
- Belyaev, F.S., Evard, M.E. and Volkov, A.E. (2022), "Effect of plastic deformation on the martensitic transformations in TiNi alloy", Smart Struct. Syst., Int. J., 29(2), 311-319. https://doi.org/10.12989/sss.2022.29.2.311
- Casciati, S. (2019), "SMA-based devices: insight across recent proposals toward civil engineering applications", Smart Struct. Syst., Int. J., 24(1), 111-125. https://doi.org/10.12989/sss.2019.24.1.111
- Chatziathanasiou, D., Chemisky, Y., Meraghni, F., Chatzigeorgiou, G. and Patoor, E. (2015), "Phase transformation of anisotropic shape memory alloys: theory and validation in superelasticity", Shape Memory Superelast., 1, 359-374. https://doi.org/10.1007/s40830-015-0027-y
- Duerig, T.W., Melton, K.N. and Stockel, D. (eds.) (1990), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, New York, NY, USA.
- Erglis, I.V., Ermolaev, V.A. and Volkov, A.E. (1995), "A model of martensitic unelasticity accounting for the crystal symmetry of the material", Le Journal de Physique IV, 5(C8), 239-244. https://doi.org/10.1051/jp4:1995833
- Evard, M.E. and Volkov, A.E. (1999), "Modeling of the martensite accommodation effect on mechanical behavior of shape memory alloys", J. Eng. Mater. Technol., 121, 102-104. https://doi.org/10.1115/1.2815989
- Evard, M.E., Volkov, A.E. and Bobeleva, O.V. (2006), "An approach for modelling fracture of shape memory alloy parts", Smart Struct. Syst., Int. J., 2(4), 357-363. https://doi.org/10.12989/sss.2006.2.4.357
- Evard, M.E., Volkov, A.E. and Belyaev, F.S. (2015), "A microstructural model of SMA with microplastic deformation and defects accumulation: Application to thermocyclic loading", Materials Today: Proceedings, 2(3), S583-S587. https://doi.org/10.1016/j.matpr.2015.07.352
- Fall, M.D., Patoor, E., Hubert, O. and Lavernhe-Taillard, K. (2019), "Comparative study of two multiscale thermosmechanical models of polycrystalline shape memory alloys: Application to a representative volume element of titanium- niobium", Shape Memory Superelast., 5, 163-171. https://doi.org/10.1007/s40830-019-00216-7
- Fischlschweiger, M., Oberaigner, E.R., Antretter, T. and Cailletaud, G. (2011), "A multi-block-spin approach for martensitic phase transformation based on statistical physics", Proceedings of Behavior and Mechanics of Multifunctional Materials and Composites, Vol. 7978, pp. 398-405, San Diego, CA, USA. https://doi.org/10.1117/12.881960
- Huang, M. and Brinson, L.C. (1998), "A multivariant model for single crystal shape memory alloy behavior", J. Mech. Phys. Solids, 46(8), 1379-1409. https://doi.org/10.1016/S0022-5096(97)00080-X
- Imamura, T., Nishiura, T., Kawano, H., Hosoda, H. and Nishida, M. (2012), "Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory", Philosophical Magazine, 92, 2247-2263. https://doi.org/10.1080/14786435.2012.669859
- Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
- Kukhareva, A., Kozminskaia, O. and Volkov, A. (2020), "Calculation of the transformation plasticity strain in the shape memory cylinder", In: E3S Web of Conferences, Vol. 157, p. 06016. https://doi.org/10.1051/e3sconf/202015706016
- Lagoudas, D.C. (2008), Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin, Germany.
- Li, Q., Seelecke, S., Kohl, M. and Krevet, B. (2006), "Thermomechanical finite element analysis of a shape memory alloy cantilever beam", Proceedings of SPIE 6166, Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, Vol. 6166, pp. 562-569.San Diego, CA, USA, March, SPIE 06-6166-73. https://doi.org/10.1117/12.677238
- Likhachev, V.A., Razov, A.I. and Volkov, A.E. (1997), "Finite difference simulation of a thermomechanical coupling", A.R. Pelton, D. Hodgson, S.M. Russel, T. Duerig (eds.), Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies SMST-97, March, Pacific Grove, CA, USA, pp. 335-340.
- Nae, F.A., Matsuzaki, Y. and Ikeda, T. (2003), "Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling", Smart Mater. Struct., 12, 6-17. https://doi.org/10.1088/0964-1726/12/1/302
- Niclaeys, C., Zineb, T.B. and Patoor, E. (2004), "Influence of microstructural parameters on shape memory alloys behavior", Ahzi, S., Cherkaoui, M., Khaleel, M.A., Zbib, H.M., Zikry, M.A. and Lamatina, B. (eds.), Proceedings of IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials. Solid Mechanics and Its Applications, Vol. 114, Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-017-0483-0_33
- Nishida, M., Nishiura, T., Kawano, H. and Imamura, T. (2012a), "Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of variant selection rule", Philosophical Magazine, 92, 2215-2233. https://doi.org/10.1080/14786435.2012.669858
- Nishida, M., Okunishi, E., Nishiura, T., Kawano, H., Imamura, T., Ii, S. and Hara, T. (2012b), "Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants", Philosophical Magazine, 92, 2234-2246. https://doi.org/10.1080/14786435.2012.669860
- Oberaigner, E.R. and Leindl, M. (2012), "Statistical physics concepts for the explanation of effects observed in martensitic phase transformations", Smart Mater. Struct., 21(9), 094020. https://doi.org/10.1088/0964-1726/21/9/094020
- Patoor, E, Eberhardt, A. and Berveiller, M. (1996), "Micromechanical modelling of superelasticity in shape memory alloys", J. de Physique IV, 6(C1), 277-292. https://doi.org/10.1051/jp4:1996127
- Petrini, L., Bertini, A., Berti, F., Pennati, G. and Migliavacca, F. (2017), "The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices", J. Eng. Med., 231(5), 391-404. https://doi.org/10.1177/0954411917696336
- Prummer, R. and Stockel, D. (2001), "NITINOL - stainless steel compound material, made by explosion welding", K.P. Staudhammer, L.E. Murr, and M.A. Meyers (eds.), In: Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier, pp. 581-584.
- Rogovoy, A.A. and Stolbova, O.S. (2019), "Numerical simulation of the phase transition control in torsion of a hollow cylinder made of Heusler alloy", PNRPU Mech. Bull., (3), 75-87.
- Salzbrenner, R.J. and Cohen, M. (1979), "On the thermodynamics of thermoelastic martensitic transformations", Acta Metallurgica, 27(5), 739-748. https://doi.org/10.1016/0001-6160(79)90107-X
- Simoes, M. and Martinez-Paneda, E. (2021), "Phase field modelling of fracture and fatigue in Shape Memory Alloys", Comput. Methods Appl. Mech. Eng.., 373, 113504. https://doi.org/10.1016/j.cma.2020.113504
- Torra, V., Carreras, G., Casciati, S. and Terriault, P. (2014), "On the NiTi wires in dampers for stayed cables", Smart Struct. Syst., Int. J., 13(3), 353-374. https://doi.org/10.12989/sss.2014.13.3.353
- Volkov, A.E. and Casciati, F. (2001), "Simulation of dislocation and transformation plasticity in shape memory alloy polycrystals", Auricchio F, Faravelli L, Magonette G and Torra V (eds.), In: Shape Memory Alloys. Advances in Modelling and Applications, Barcelona, Spain, pp. 88-104.
- Volkov, A.E. and Kukhareva, A.S. (2008), "Calculation of the stress-strain state of a TiNi cylinder subjected to cooling under axial force and unloading", Bull. Russian Acad. Sci.: Phys., 72(9), 1267-1270. https://doi.org/10.3103/S106287380809027X
- Volkov, A.E., Emelyanova, E.V., Evard, M.E. and Volkova, N.A. (2013), "An explanation of phase deformation tension-compression asymmetry of TiNi by means of microstructural modeling", J. Alloys Compounds, 577(S1), S127-S130. https://doi.org/10.1016/j.jallcom.2012.05.131
- Volkov, A.E., Kukhareva, A.S., Volkova, N.A. and Malkova, Y.V. (2017), "Size effects in a shape memory alloy rod caused by inhomogeneity of temperature and stress fields studied through solving of a 1d connected thermal and mechanical problem", Proceedings of the 8th Conference on Smart Structures and Materials, SMART 2017 and 6th International Conference on Smart Materials and Nanotechnology in Engineering, January, pp. 1582-1589.
- Volkov A.E., Evard, M.E., Volkova, N.A. and Vukolov, E.A. (2019), "Application of a microstructural model to simulation of a TiNi beam bending performance and calculation of thickness stress distributions", Proceedings of the 9th ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019, pp. 686-695.
- Wanhill, R.J.H. and Ashok, B. (2017), "Shape Memory Alloys (SMAs) for Aerospace Applications", Prasad, N., Wanhill, R. (eds.), In: Aerospace Materials and Material Technologies, Indian Institute of Metals Series, Springer, Singapore.
- Yang, S. and Seelecke, S. (2008), "Modeling and analysis of SMA-based adaptive structures", Proceedings of the COMSOL Conference 2008, Boston, MA, USA.
- Zhang, W., Zhang, Y., Zheng, G., Zhang, R. and Wang, Y. (2013), "A biomechanical research of growth control of spine by shape memory alloy staples", BioMed Res. Int., 384894. https://doi.org/10.1155/2013/384894