Acknowledgement
The work described in this paper is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region (SAR), China (Grant No. PolyU 152014/18E), and a grant from the Hong Kong, Macao, Taiwan Science and Technology Innovation Cooperation Key Project of Sichuan Province, China (Grant No. 2020YFH0178). The authors would also like to appreciate the funding support by the Innovation and Technology Commission of the Hong Kong SAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center (Grant No. K-BBY1).
References
- Aitkin, M. (1991), "Posterior Bayes factors", J. Royal Statist. Soc.: Series B (Methodological), 53(1), 111-128. https://doi.org/10.1111/j.2517-6161.1991.tb01812.x
- Asplund, M., Famurewa, S. and Rantatalo, M. (2014), "Condition monitoring and e-maintenance solution of railway wheels", J. Quality Maint. Eng., 20(3), 216-232. https://doi.org/10.1108/JQME-05-2014-0027
- Barke, D.W. and Chiu, W.K. (2005), "A review of the effects of out-of-round wheels on track and vehicle components", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(3), 151-175. https://doi.org/10.1243/095440905X8853
- Belotti, V., Crenna, F., Michelini, R.C. and Rossi, G.B. (2006), "Wheel-flat diagnostic tool via wavelet transform", Mech. Syst. Signal Process., 20(8), 1953-1966. https://doi.org/10.1016/j.ymssp.2005.12.012
- Ben-Hur, A., Ong, C.S., Sonnenburg, S., Scholkopf, B. and Ratsch, G. (2008), "Support vector machines and kernels for computational biology", PLoS Computat. Biol., 4(10), e1000173. https://doi.org/10.1371/journal.pcbi.1000173
- Bollas, K., Papasalouros, D., Kourousis, D. and Anastasopoulos, A. (2013), "Acoustic emission monitoring of wheel sets on moving trains", Constr. Build. Mater., 48, 1266-1272. https://doi.org/10.1016/j.conbuildmat.2013.02.013
- Dukkipati, R.V. and Dong, R. (1999), "Impact loads due to wheel flats and shells", Vehicle Syst. Dyn., 31(1), 1-22. https://doi.org/10.1076/vesd.31.1.1.2097
- Filograno, M.L., Guillen, P.C., Rodriguez-Barrios, A., Martin- Lopez, S., Rodriguez-Plaza, M., Andres-Alguacil, A. and Gonzalez-Herraez, M. (2011), "Real-time monitoring of railway traffic using fiber Bragg grating sensors", IEEE Sensors J., 12(1), 85-92. https://doi.org/10.1109/JSEN.2011.2135848
- Filograno, M.L., Corredera, P., Rodriguez-Plaza, M., Andres- Alguacil, A. and Gonzalez-Herraez, M. (2013), "Wheel flat detection in high-speed railway systems using fiber Bragg gratings", IEEE Sensors J., 13(12), 4808-4816. https://doi.org/10.1109/JSEN.2013.2274008
- Flyer, N. and Wright, G.B. (2009), "A radial basis function method for the shallow water equations on a sphere", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2106), 1949-1976. https://doi.org/10.1098/rspa.2009.0033
- Flyer, N., Barnett, G.A. and Wicker, L.J. (2016), "Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations", J. Computat. Phys., 316, 39-62. https://doi.org/10.1016/j.jcp.2016.02.078
- Hyndman, R.J. and Koehler, A.B. (2006), "Another look at measures of forecast accuracy", Int. J. Forecast., 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
- Jamshidi, A., Roohi, S.F., Nunez, A., Babuska, R., De Schutter, B., Dollevoet, R. and Li, Z. (2016), "Probabilistic defect-based risk assessment approach for rail failures in railway infrastructure", IFAC-PapersOnLine, 49(3), 73-77. https://doi.org/10.1016/j.ifacol.2016.07.013
- Jin, X., Wu, L., Fang, J., Zhong, S. and Ling, L. (2012), "An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system", Vehicle Syst. Dyn., 50(12), 1817-1834. https://doi.org/10.1080/00423114.2012.695022
- Johansson, A. and Nielsen, J.C. (2003), "Out-of-round railway wheels-wheel-rail contact forces and track response derived from field tests and numerical simulations", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 217(2), 135-146. https://doi.org/10.1243/095440903765762878
- Kass, R.E. and Raftery, A.E. (1995), "Bayes factors", In: J. Am. Statist. Assoc., 90(430), 773-795. https://doi.org/10.2307/2291091
- Kouroussis, G., Connolly, D.P. and Verlinden, O. (2014), "Railway-induced ground vibrations-a review of vehicle effects", Int. J. Rail Transport., 2(2), 69-110. https://doi.org/10.1080/23248378.2014.897791
- Krummenacher, G., Ong, C.S., Koller, S., Kobayashi, S. and Buhmann, J.M. (2017), "Wheel defect detection with machine learning", IEEE Transact. Intell. Transport. Syst., 19(4), 1176-1187. https://doi.org/10.1109/TITS.2017.2720721
- Lipowsky, H., Staudacher, S., Bauer, M. and Schmidt, K.J. (2010), "Application of Bayesian forecasting to change detection and prognosis of gas turbine performance", J. Eng. Gas Turbines Power, 132(3). https://doi.org/10.1115/1.3159367
- Liu, X.Z. and Ni, Y.Q. (2018), "Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques", Smart Struct. Syst., Int. J., 21(5), 687-694. https://doi.org/10.12989/sss.2018.21.5.687
- Liu, X.Z., Ni, Y.Q. and Zhou, L. (2018), "Condition-based maintenance of high-speed railway vehicle wheels through trackside monitoring", Proceedings of the Second International Workshop on Structural Health Monitoring for Railway System, Qingdao, China, October.
- Liu, X.Z., Xu, C. and Ni, Y.Q. (2019), "Wayside detection of wheel minor defects in high-speed trains by a Bayesian blind source separation method", Sensors, 19(18), 3981. https://doi.org/10.3390/s19183981
- Marin, J.M. and Robert, C. (2007), Bayesian Core: A Practical Approach to Computational Bayesian Statistics, Springer, New York, NY, USA.
- Milkovic, D., Simic, G., Jakovljevic, Z., Tanaskovic, J. and Lucanin, V. (2013), "Wayside system for wheel-rail contact forces measurements", Measurement, 46(9), 3308-3318. https://doi.org/10.1016/j.measurement.2013.06.017
- Morys, B. (1999), "Enlargement of out-of-round wheel profiles on high speed trains", J. Sound Vib., 227(5), 965-978. https://doi.org/10.1006/jsvi.1999.2055
- Ni, Y.Q. and Zhang, Q.H. (2020), "A Bayesian machine learning approach for online detection of railway wheel defects using track-side monitoring", Struct. Health Monitor., 20(4), 1536-1550. https://doi.org/10.1177/1475921720921772
- Pau, M. (2005), "Ultrasonic waves for effective assessment of wheel-rail contact anomalies", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219(2), 79-90. https://doi.org/10.1243/095440905X8808
- Petersson, M. (2000), "Noise-related roughness of railway wheel treads-full-scale testing of brake blocks", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 214(2), 63-77. https://doi.org/10.1243/0954409001531342
- Pohl, R., Erhard, A., Montag, H.J., Thomas, H.M. and Wustenberg, H. (2004), "NDT techniques for railroad wheel and gauge corner inspection", NDT & e Int., 37(2), 89-94. https://doi.org/10.1016/j.ndteint.2003.06.001
- Pontius, R.G., Thontteh, O. and Chen, H. (2008), "Components of information for multiple resolution comparison between maps that share a real variable", Environ. Ecol. Statist., 15(2), 111-142. https://doi.org/10.1007/s10651-007-0043-y
- Stratman, B., Liu, Y. and Mahadevan, S. (2007), "Structural health monitoring of railroad wheels using wheel impact load detectors", J. Fail. Anal. Prevent., 7(3), 218-225. https://doi.org/10.1007/s11668-007-9043-3
- Tipping, M.E. (2001), "Sparse Bayesian learning and the relevance vector machine", J. Mach. Learn. Res., 1(Jun), 211-244. https://doi.org/10.1162/15324430152748236
- Uzzal, R.U.A., Ahmed, W. and Rakheja, S. (2008), "Dynamic analysis of railway vehicle-track interactions due to wheel flat with a pitch-plane vehicle model", J. Mech. Eng., 39(2), 86-94. https://doi.org/10.3329/jme.v39i2.1851
- Wang, Y.W., Ni, Y.Q. and Wang, X. (2020), "Real-time defect detection of high-speed train wheels by using Bayesian forecasting and dynamic model", Mech. Syst. Signal Process., 139, 106654. https://doi.org/10.1016/j.ymssp.2020.106654
- Wang, S.M., Jiang, G.F., Ni, Y.Q., Lu, Y., Lin, G.B., Pan, H.L., Xu, J.Q. and Hao, S. (2022), "Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network", Smart Struct. Syst., Int. J., 29(4), 625-640. https://doi.org/10.12989/sss.2022.29.4.625
- Wei, C., Xin, Q., Chung, W.H., Liu, S.Y., Tam, H.Y. and Ho, S.L. (2011), "Real-time train wheel condition monitoring by fiber Bragg grating sensors", Int. J. Distrib. Sensor Networks, 8(1), 409048. https://doi.org/10.1155/2012/409048
- Wei, B., Xie, N. and Hu, A. (2018), "Optimal solution for novel grey polynomial prediction model", Appl. Mathe. Modell., 62, 717-727. https://doi.org/10.1016/j.apm.2018.06.035
- Willmott, C.J. and Matsuura, K. (2006), "On the use of dimensioned measures of error to evaluate the performance of spatial interpolators", Int. J. Geograph. Inform. Sci., 20(1), 89-102. https://doi.org/10.1080/13658810500286976
- Wong, S.M., Hon, Y.C. and Golberg, M.A. (2002), "Compactly supported radial basis functions for shallow water equations", Appl. Mathe. Computat., 127(1), 79-101. https://doi.org/10.1016/S0096-3003(01)00006-6
- Wu, X. and Chi, M. (2016), "Study on stress states of a wheelset axle due to a defective wheel", J. Mech. Sci. Technol.gy, 30(11), 4845-4857. https://doi.org/10.1007/s12206-016-1003-y
- Wu, T.X. and Thompson, D.J. (2002), "A hybrid model for the noise generation due to railway wheel flats", J. Sound Vib., 251(1), 115-139. https://doi.org/10.1006/jsvi.2001.3980
- Wu, Y., Du, X., Zhang, H.J., Wen, Z.F. and Jin, X.S. (2017), "Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train", J. Zhejiang Univ.-Sci. A, 18(8), 579-592. https://doi.org/10.1631/jzus.A1600741
- Zhang, Q. (2020), "Sparse Bayesian learning approach for damage detection in a population of nominally identical structures", Ph.D. Dissertation; The Hong Kong Polytechnic University, Hong Kong.
- Zhang, L.H., Wang, Y.W., Ni, Y.Q. and Lai, S.K. (2018), "Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis", Smart Struct. Syst., Int. J., 21(5), 705-713. https://doi.org/10.12989/sss.2018.21.5.705