Acknowledgement
This work was supported in part by the Fujian Provincial Department of Science and Technology of China under Grant 2019H0006, 2021J01580 and 2022H0008; in part by the National Natural Science Foundation of China under Grant 51508105.
References
- Agustsson, E. and Timofte, R. (2017), "Ntire 2017 challenge on single image super-resolution: Dataset and study", Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, July, pp. 1122-1131.
- Ahn, N., Kang, B. and Sohn, K.A. (2018), "Fast, accurate, and lightweight super-resolution with cascading residual network", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 252-268.
- Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J. (2011), "Contour detection and hierarchical image segmentation", IEEE Transact. Pattern Anal. Mach. Intell., 33(5), 898-916. https://doi.org/10.1109/TPAMI.2010.161
- Bevilacqua, M., Roumy, A., Guillemot, C. and Alberi-Morel, M.L. (2012), "Low-complexity single-image super-resolution based on nonnegative neighbor embedding", Proceedings of the 23rd British Machine Vision Conference (BMVC), Surrey, UK, September, pp. 1-10. http://dx.doi.org/10.5244/C.26.135
- Blu, T., Thevenaz, P. and Unser, M. (2004), "Linear interpolation revitalized", IEEE Transact. Image Process., 13(5), 710-719. https://doi.org/10.1109/TIP.2004.826093
- Bouguet, J.Y. (2013), Camera Calibration Toolbox for Matlab, Wwwvisioncaltechedu/bouguetj
- Bulat, A., Yang, J. and Tzimiropoulos, G. (2018), "To learn image super-resolution, use a GAN to learn how to do image degradation first", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 185-200.
- Caetano, E., Silva, S. and Bateira, J. (2007), "Application of a vision system to the monitoring of cable structures", Proceedings of the 7th International Symposium on Cable Dynamics, Vienna, Austria, December, pp. 225-236.
- Cai, J., Zeng, H., Yong, H., Cao, Z. and Zhang, L. (2019), "Toward real-world single image super-resolution: A new benchmark and a new model", Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, October-November, pp. 3086-3095.
- Cha, Y.J., Chen, J.G. and Buyukozturk, O. (2017), "Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters", Eng. Struct., 132, 300-313. https://doi.org/10.1016/j.engstruct.2016.11.038
- Chang, H., Yeung, D.Y. and Xiong, Y. (2004), "Super-resolution through neighbor embedding", Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, June-July. https://doi.org/10.1109/CVPR.2004.1315043
- Chantas, G.K., Galatsanos, N.P. and Woods, N.A. (2007), "Superresolution based on fast registration and maximum a posteriori reconstruction", IEEE Transact. Image Process., 16(7), 1821-1830. https://doi.org/10.1109/TIP.2007.896664
- Chen, Y.W. (2011), "Learning-Based Super-Resolution", IEICE Technical Report; 111, 61-66.
- Dong, C., Loy, C.C., He, K. and Tang, X. (2014), "Learning a deep convolutional network for image super-resolution", Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, September, pp. 184-199.
- Dong, C., Loy, C.C. and Tang, X. (2016), "Accelerating the superresolution convolutional neural network", Proceedings of European Conference on Computer Vision, Amsterdam, The Netherlands, October, pp. 391-407. https://doi.org/10.1007/978-3-319-46475-6_25
- Elad, M. and Feuer, A. (2002), "Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images", IEEE Transact. Image Process., 6(12), 1646-1658. https://doi.org/10.1109/83.650118
- Feng, D. and Feng, M.Q. (2015), "Model updating of railway bridge using in situ dynamic displacement measurement under trainloads", J. Bridge Eng., 20(12), 4015019. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000765
- Finkelstein, S.E., Schrump, D.S., Nguyen, D.M., Hewitt, S.M., Kunst, T.F. and Summers, R.M. (2003), "Comparative evaluation of super high-resolution CT scan and virtual bronchoscopy for the detection of tracheobronchial malignancies", Chest, 124(5), 1834-1840. https://doi.org/10.1378/chest.124.5.1834
- Freeman, W.T., Jones, T.R. and Pasztor, E.C. (2002), "Examplebased super-resolution", Comput. Graphics Applicat. IEEE, 22(2), 56-65. https://doi.org/10.1109/38.988747
- Fujimoto, A., Ogawa, T., Yamamoto, K., Matsui, Y., Yamasaki, T. and Aizawa, K. (2016), "Manga109 dataset and creation of metadata", Proceedings of the 1st International Workshop on Comics Analysis, Processing and Understanding, Cancun, Mexico, December, pp. 1-5. https://doi.org/10.1145/3011549.3011551
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial nets", (Ghahramani, Z., Welling, M., Cortes, C., et al.), In: Advances in Neural Information Processing Systems, Vol. 27, pp. 2672-2680.
- Hansen, R.S., Waldram, D.W., Thai, T.Q. and Berke, R.B. (2021), "Super Resolution Digital Image Correlation (SR-DIC): An Alternative to Image Stitching at High Magnifications", Experim. Mech., 61(9), 1351-1368. https://doi.org/10.1007/s11340-021-00729-2
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June, pp. 770-778.
- Hore, A. and Ziou, D. (2010), "Image quality metrics: PSNR vs. SSIM", Proceedings of 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, August, pp. 2366-2369. https://doi.org/10.1109/ICPR.2010.579
- Huang, J.B., Singh, A. and Ahuja, N. (2015), "Single image superresolution from transformed self-exemplars", Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June, pp. 5197-5206.
- Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017), "Densely connected convolutional networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July, pp. 2261-2269.
- Irani, M. and Peleg, S. (1991), "Improving resolution by image registration", CVGIP: Graphical models and image processing, 53(3), 231-239. https://doi.org/10.1016/1049-9652(91)90045-L
- Keys, R.G. (2003), "Cubic convolution interpolation for digital image processing", IEEE Transact. Acoust. Speech Signal Process., 29(6), 1153-1160. https://doi.org/10.1109/TASSP.1981.1163711
- Kim, J., Lee, J.K. and Lee, K.M. (2016a), "Accurate image superresolution using very deep convolutional networks", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June, pp. 1646-1654.
- Kim, J., Lee, J.K. and Lee, K.M. (2016b), "Deeply-recursive convolutional network for image super-resolution", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June, pp. 1637-1645.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "Imagenet classification with deep convolutional neural networks", Adv. Neural Inform. Process. Syst., 25.
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W. (2017), "Photo-realistic single image super-resolution using a generative adversarial network", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July, pp. 105-114.
- Lee, J.H., Jung, C.Y., Choi, E. and Cheung, J.H. (2017), "Visionbased multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation", Smart Struct. Syst., Int. J., 20(5), 563-572. https://doi.org/10.12989/sss.2017.20.5.563
- Li, J., Fang, F., Mei, K. and Zhang, G. (2018), "Multi-scale residual network for image super-resolution", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 527-532.
- Li, B., Wang, B., Liu, J., Qi, Z. and Shi, Y. (2020), "s-LWSR: Super lightweight super-resolution network", IEEE Transact. Image Process., 29, 8368-8380. https://doi.org/10.1109/TIP.2020.3014953
- Lim, B., Son, S., Kim, H., Nah, S. and Mu Lee, K. (2017), "Enhanced deep residual networks for single image superresolution", Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July, pp. 136-144.
- Lin, Z., He, J., Tang, X. and Tang, C.K. (2008), "Limits of learning-based superresolution algorithms", Int. J. Comput. Vis., 80(3), 406-420. https://doi.org/10.1007/s11263-008-0148-2
- Liu, Y., Dong, Z., Lim, K.P. and Ling, N. (2020a), "A densely connected face super-resolution network based on attention mechanism", Proceedings of 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, November, pp. 148-152. https://doi.org/10.1109/ICIEA48937.2020.9248111
- Liu, K., Ma, Y., Xiong, H., Yan, Z., Zhou, Z., Fang, P. and Liu, C. (2020b), "Medical image super-resolution method based on dense blended attention network", Laser & Optoelectronics Progress, 57(2), 021014. https://doi.org/10.48550/arXiv.1905.05084
- Luo, Y., Zhou, L., Wang, S. and Wang, Z. (2017), "Video satellite imagery super resolution via convolutional neural networks", IEEE Geosci. Remote Sens. Lett., 14(12), 2398-2402. https://doi.org/10.1109/LGRS.2017.2766204
- Martin, D., Fowlkes, C., Tal, D. and Malik, J. (2001), "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics", Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001), Vol. 2, Vancouver, BC, Canada, July, pp. 416-423. https://doi.org/10.1109/ICCV.2001.937655
- Mecheri, K., Ziou, D. and Deschenes, F. (2007), "Super-resolution based on interpolation and global sub pixel translation", Proceedings of the 4th Canadian Conference on Computer and Robot Vision (CRV'07), Montreal, QC, Canada, May, pp. 448-458. https://doi.org/10.1109/CRV.2007.62
- Nguyen, M.Q., Atkinson, P.M. and Lewis, H.G. (2005), "Superresolution mapping using a Hopfield neural network with LIDAR data", IEEE Geosci. Remote Sens. Lett., 2(3), 366-370. https://doi.org/10.1109/LGRS.2005.851551
- Ni, K.S. and Nguyen, T.Q. (2007), "Image superresolution using support vector regression", IEEE Trans. Image Process., 16(6), 1596-1610. https://doi.org/10.1109/TIP.2007.896644
- Oh, B.K., Hwang, J.W., Kim, Y., Cho, T. and Park, H.S. (2015), "Vision-based system identification technique for building structures using a motion capture system", J. Sound Vib., 356, 72-85. https://doi.org/10.1016/j.jsv.2015.07.011
- Ojio, T., Carey, C., O'Brien, E.J., Doherty, C. and Taylor, S.E. (2016), "Contactless bridge weigh-in-motion", J. Bridge Eng., 21, 4016032. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000776
- Park, S.C., Park, M.K. and Kang, M.G. (2003), "Super-resolution image reconstruction: a technical overview", IEEE Signal Process. Magaz., 20(3), 21-36. https://doi.org/10.1109/MSP.2003.1203207
- Park, S.J., Son, H., Cho, S., Hong, K.S. and Lee, S. (2018), "Srfeat: Single image super-resolution with feature discrimination", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 439-455.
- Rasti, P., Uiboupin, T., Escalera, S. and Anbarjafari, G. (2016), "Convolutional neural network super resolution for face recognition in surveillance monitoring", Proceedings of International Conference on Articulated Motion and Deformable Objects, Palma de Mallorca, Spain, July, pp. 175-184. https://doi.org/10.1007/978-3-319-41778-3_18
- Schultz, R.R. and Stevenson, R.L. (1996), "Extraction of highresolution frames from video sequences", IEEE Transact. Image Process. A Publicat. IEEE Signal Process. Soc., 5(6), 996-1011. https://doi.org/10.1109/83.503915
- Seif, G. and Androutsos, D (2018), "Edge-based loss function for single image super-resolution", Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Alberta, Canada, April, pp. 1468-1472. https://doi.org/10.1109/ICASSP.2018.8461664
- Sheikh, H.R., Bovik, A.C. and De Veciana, G. (2006), "An information fidelity criterion for image quality assessment using natural scene statistics", IEEE Transact. Image Process., 14(12), 2117-2128. https://doi.org/10.1109/TIP.2005.859389
- Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D. and Wang, Z. (2016), "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June, pp. 1874-1883.
- Song, X., Dai, Y. and Qin, X. (2016), "Deep depth superresolution: Learning depth super-resolution using deep convolutional neural network", Proceedings of the 13th Asian Conference on Computer Vision, Taipei, Taiwan, November, pp. 360-376. https://doi.org/10.1007/978-3-319-54190-7_22
- Song, X., Liu, W., Liu, J., Liu, C., Lu, C. and Gao, H. (2019), "Deep CNN jointing low-high level feature for image superresolution", Proceedings of the 10th International Conference on Graphics and Image Processing (ICGIP 2018), Vol. 11069, Chengdu, China, December, pp. 1059-1065. https://doi.org/10.1117/12.2524412
- Stark, H. and Oskoui, P. (1989), "High-resolution image recovery from image-plane arrays, using convex projections", J. Optical Soc. Am. A Optics Image Sci., 6(11), 1715-1726. https://doi.org/10.1364/JOSAA.6.001715
- Tai, Y., Yang, J., Liu, X. and Xu, C. (2017a), "Memnet: A persistent memory network for image restoration", Proceedings of the IEEE International Conference on Computer Vision, Salt Lake City, UT, USA, June, pp. 4539-4547.
- Tai, Y., Yang, J. and Liu, X. (2017b), "Image super-resolution via deep recursive residual network", Proceedings of the 30th 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July, pp. 2790-2798.
- Tian, J. and Ma, K.K. (2011), "A survey on super-resolution imaging", Signal Image Video Process., 5(3), 329-342. https://doi.org/10.1007/s11760-010-0204-6
- Tong, T., Li, G., Liu, X. and Gao, Q. (2017), "Image superresolution using dense skip connections", Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, October, pp. 4809-4817.
- Trajkovic, M. and Hedley, M (1998), "Fast corner detection", Image Vision Comput., 16(2), 75-87. https://doi.org/10.1016/S0262-8856(97)00056-5
- Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004), "Image quality assessment: from error visibility to structural similarity", IEEE Trans. Image Process., 13(4), 600-612. https://doi.org/10.1109/TIP.2003.819861
- Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y. and Change Loy, C. (2018), "Esrgan: Enhanced super-resolution generative adversarial networks", Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, September.
- Wang, Z., Chen, J. and Hoi, S.C. (2020a), "Deep learning for image super-resolution: A survey", IEEE Transact. Pattern Anal. Mach. Intell., 43(10), 3365-3387. https://doi.org/10.1109/TPAMI.2020.2982166
- Wang, W., Hu, Y., Luo, Y. and Zhang, T. (2020b), "Brief survey of single image super-resolution reconstruction based on deep learning approaches", Sens. Imag., 21(1), 1-20. https://doi.org/10.1007/s11220-020-00285-4
- Wu, L.J., Casciati, F. and Casciati, S. (2014), "Dynamic testing of a laboratory model via vision-based sensing", Eng. Struct., 60, 113-125. https://doi.org/10.1016/j.engstruct.2013.12.002
- Wu, L., Su, Y., Chen, Z., Chen, S., Cheng, S. and Lin, P. (2020a), "Six-degree-of-freedom generalized displacements measurement based on binocular vision", Struct. Control Health Monitor., 27(2), e2458. https://doi.org/10.1002/stc.2458
- Wu, Q., Fan, C., Li, Y., Li, Y. and Hu, J. (2020b), "A novel perceptual loss function for single image super-resolution", Multimedia Tools Applicat., 79(29), 21265-21278. https://doi.org/10.1007/s11042-020-08878-7
- Xu, Y. and Brownjohn, J.M. (2018), "Review of machine-vision based methodologies for displacement measurement in civil structures", J. Civil Struct. Health Monitor., 8, 91-110. https://doi.org/10.1007/s13349-017-0261-4
- Yan, X., Shen, Q. and Liu, X. (2015), "Super-resolution reconstruction for license plate image in video surveillance system", Proceedings of 2015 10th International Conference on Communications and Networking in China (ChinaCom), Shanghai, China, August, pp. 643-647. https://doi.org/10.1109/CHINACOM.2015.7498016
- Yang, J., Wright, J., Huang, T.S. and Ma, Y. (2010), "Image superresolution via sparse representation", IEEE Transact. Image Process., 19(11), 2861-2873. https://doi.org/10.1109/TIP.2010.2050625
- Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.H. and Liao, Q. (2019a), "Deep learning for single image super-resolution: A brief review", IEEE Transact. Multimedia, 21(12), 3106-3121. https://doi.org/10.1109/TMM.2019.2919431
- Yang, W., Wang, W., Zhang, X., Sun, S. and Liao, Q. (2019b), "Lightweight feature fusion network for single image superresolution", IEEE Signal Process. Lett., 26(4), 538-542. https://doi.org/10.1109/LSP.2018.2890770
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016a), "Vision-based structural displacement measurement: System performance evaluation and influence factor analysis", Measurement, 88, 372-384. https://doi.org/10.1016/j.measurement.2016.01.024
- Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., Int. J., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935
- Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer Jr, B.F. (2016), "Target-free approach for vision-based structural system identification using consumergrade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/stc.1850
- Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X. and Huang, T. (2018), "Wide activation for efficient and accurate image superresolution", arXiv preprint arXiv:1808.08718. https://doi.org/10.48550/arXiv.1808.08718
- Zeyde, R., Elad, M. and Protter, M. (2010), "On single image scale-up using sparse-representations", Proceedings of International Conference on Curves and Surfaces, Avignon, France, June, pp. 711-730. https://doi.org/10.1007/978-3-642-27413-8_47
- Zhang, Z. (2000), "A flexible new technique for camera calibration", IEEE Transact. Pattern Anal. Mach. Intell., 22(11), 1330-1334. https://doi.org/10.1109/34.888718
- Zhang, K., Zuo, W. and Zhang, L. (2017), "Learning a single convolutional super-resolution network for multiple degradations", Proceedings of Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July, pp. 33662-3271.
- Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B. and Fu, Y. (2018a), "Image super-resolution using very deep residual channel attention networks", Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, September, pp. 286-301.
- Zhang, Y., Tian, Y., Kong, Y., Zhong, B. and Fu, Y. (2018b), "Residual dense network for image super-resolution", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, June, pp. 2472-2481.
- Zhang, Y., Liu, S., Dong, C., Zhang, X. and Yuan, Y. (2019), "Multiple cycle-in-cycle generative adversarial networks for unsupervised image super-resolution", IEEE Transact. Image Process., 29, 1101-1112. https://doi.org/10.1109/TIP.2019.2938347