Acknowledgement
This work has been partially supported by the Linz Center of Mechatronics (LCM) in the framework of the Austrian COMET-K2 programme.
References
- Amini, A., Mohammadimehr, M. and Faraji, A. (2020), "Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm", Smart Struct. Syst., Int. J., 26(6), 721-733. https://doi.org/10.12989/sss.2020.26.6.721
- Ask, A., Menzel, A. and Ristinmaa, M. (2012), "Phenomenological modeling of viscous electrostrictive polymers", Int. J. Non-Linear Mech., 47, 156-165. https://doi.org/10.1016/j.ijnonlinmec.2011.03.020
- Bar-Cohen, Y. (2004), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, Bellingham, WA, USA.
- Bonet, J. (2001), "Large strain viscoelastic constitutive models", Int. J. Solids Struct., 38, 2953-2968. https://doi.org/10.1016/S0020-7683(00)00215-8
- Bonet, J. and Wood, R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, (2nd Ed.), Cambridge University Press, Cambridge, UK.
- Bustamante, R. (2009), "A variational formulation for a boundary value problem considering an electro-sensitive elastomer interacting with two bodies", Mech. Res. Commun., 36, 791-795. https://doi.org/10.1016/j.mechrescom.2009.05.009
- Cao, Y., Zandi, Y., Gholizadeh, M., Fu, L., Du, J., Qian, X., Wang, Z., Roco-Videla, A., Selmi, A. and Issakhov, A. (2021), "Optimization algorithms for composite beam as smart active control of structures using genetic algorithms", Smart Struct. Syst., Int. J., 27(6), 1041-1052. https://doi.org/10.12989/sss.2021.27.6.1041
- Diaconu, I., Dorohoi, D.O. and Ciobanu, C. (2008), "Electromechanical response of polyurethane films with different thickness", Roman. J. Phys., 53(1-2), 91-97.
- Dorfmann, A. and Ogden, R.W. (2005), "Nonlinear electroelasticity", Acta Mechanica, 174, 167-183. https://doi.org/10.1007/s00707-004-0202-2
- Eringen, A.C. and Maugin, G.A. (1990), Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York, NY, USA.
- Gao, Z., Tuncer, A. and Cuitino, A.M. (2011), "Modeling and simulation of the coupled mechanical-electrical response of soft solids", Int. J. Plasticity, 27(10), 1459-1470. https://doi.org/10.1016/j.ijplas.2010.07.006
- Goncalves, J.F., Fonseca, J.S.O. and Silveira, O.A.A. (2016), "A controllability-based formulation for the topology optimization of smart structures", Smart Struct. Syst., Int. J., 17(5), 773-793. https://doi.org/10.12989/sss.2016.17.5.773
- Hansy-Staudigl, E. and Krommer, M. (2021), "Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation", J. Intell. Mater. Syst. Struct., 32(3), 296-316. https://doi.org/10.1177/1045389X20935640
- Hansy-Staudigl, E., Krommer, M. and Humer, A. (2019), "A complete direct approach to nonlinear modeling of dielectric elastomer plates", Acta Mechanica, 230, 3923-3943. https://doi.org/10.1007/s00707-019-02529-1
- Hom, C.L. and Shankar, N. (1994), "A fully coupled constitutive model for electrostrictive ceramic materials", J. Intell. Mater. Syst. Struct., 5, 795-801. https://doi.org/10.1177/1045389X9400500610
- Humer, A. and Krommer, M. (2015), "Modeling of piezoelectric materials by means of a multiplicative decomposition of the deformation gradient", Mech. Adv. Mater. Struct., 22, 125-135. https://doi.org/10.1080/15376494.2014.907948
- Humer, A., Pechstein, A.S., Meindlhumer, M. and Krommer, M. (2020), "Nonlinear electromechanical coupling in ferroelectric materials: large deformation and hysteresis", Acta Mechanica, 231, 2521-2544. https://doi.org/10.1007/s00707-020-02657-z
- Kamlah, M. (2001), "Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena", Continuum Mech. Thermodyn., 13, 219-268. https://doi.org/10.1007/s001610100052
- Katsouras, I., Asadi, K., Li, M., Van Driel, T.B., Kjaer, K.S., Zhao, D., Lenz, T., Gu, Y., Blom, P.W., Damjanovic, D. and Nielsen, M.M. (2016), "The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene uoride)", Nature Mater., 15, 78-84. https://doi.org/10.1038/nmat4423
- Klinkel, S. (2006), "A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics", Int. J. Solids Struct., 43(22-23), 7197-7222. https://doi.org/10.1016/j.ijsolstr.2006.03.008
- Klinkel, S., Zwecker, S. and Mueller, R. (2013), "A solid shell finite element formulation for dielectric elastomers", J. Appl. Mech., 80, 021026-1-021026-11. https://doi.org/10.1115/1.4007435
- Lubarda, V.A. (2004), "Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics", Appl. Mech. Rev., 57(4), 95-108. https://doi.org/10.1115/1.1591000
- Maugin, G.A. (1988), Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam, The Netherlands.
- McMeeking, R.M. and Landis, C.M. (2005), "Electrostatic forces and stored energy for deformable dielectric materials", J. Appl. Mech., 72(4), 581-590. https://doi.org/10.1115/1.1940661
- Mehnert, M., Hossain, M. and Steinmann, P. (2016), "On nonlinear thermo-electro-elasticity", Proceedings of the Royal Society A, 472, 20160170-1-20160170-23.
- Moghadam, A.A.A., Kouzani, A., Zamani, R., Magniez, K. and Kaynak, A. (2015), "Nonlinear large deformation dynamic analysis of electroactive polymer actuators", Smart Struct. Syst., Int. J., 15(6), 1601-1623. https://doi.org/10.12989/sss.2015.15.6.1601
- Mukherjee, S. and Ganguli, R. (2010), "A dragonfly inspired apping wing actuated by electro active polymers", Smart Struct. Syst., Int. J., 6(7), 867-887. https://doi.org/10.12989/sss.2010.6.7.867
- Mura, T. (1987), Micromechanics of Defects in Solids, (2nd Ed.), Springer, Netherlands.
- Pao, Y.H. (1978), "Electromagnetic forces in deformable continua", In: Nemat-Nasser S (Ed.), Mechanics Today, 4, Pergamon Press, Oxford, pp. 209-306.
- Pechstein, A.S. (2019), "Large deformation mixed finite elements for smart structures", Mech. Adv. Mater. Struct., 27(23), 1983-1993. https://doi.org/10.1080/15376494.2018.1536932
- Pechstein, A.S., Meindlhumer, M. and Humer, A. (2021), "Highorder mixed finite elements for an energy-based model of the polarization process in ferroelectric materials", J. Intell. Mater. Syst. Struct., 32(3), 355-368. https://doi.org/10.1177/1045389X20953895
- Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P. (1998), "Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation", Sensors and Actuators A: Physical, 64, 77-85. https://doi.org/10.1016/S0924-4247(97)01657-9
- Prechtl, A. (1982a), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 1: Grundgleichungen und allgemeine Materialbeziehungen", Archiv fur Elektrotechnik, 65(3), 167-177. https://doi.org/10.1007/BF01578704
- Prechtl, A. (1982b), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 2: Elektroelastische und elastooptische Erscheinungen", Archiv fur Elektrotechnik, 65(4), 185-194. https://doi.org/10.1007/BF01452139
- Reissner, H. (1931), "Eigenspannungen und Eigenspannungsquellen", Zeitschrift fur Angewandte Mathematik und Mechanik, 11(1), 59-70. https://doi.org/10.1002/zamm.19310110101
- Skatulla, S., Sansour, C. and Arockiarajan, A. (2012), "A multiplicative approach for nonlinear electro-elasticity", Comput. Methods Appl. Mech. Eng., 245-246, 243-255. https://doi.org/10.1016/j.cma.2012.07.002
- Staudigl, E., Krommer, M. and Vetyukov, Y. (2018), "Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability", J. Intell. Mater. Syst. Struct., 29(17), 3495-3513. https://doi.org/10.1177/1045389X17733052
- Su, J., Harrison, J., Clair, T., Bar-Cohen, Y. and Leary, S. (1999), "Electrostrictive grafr elastomers and applications", MRS Online Proceedings Library, 600, 131-136. https://doi.org/10.1557/PROC-600-131
- Suo, Z. (2010), "Theory of dielectric elastomers", Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9
- Taylor, C. and Hood, P. (1973), "A numerical solution of the Navier-Stokes equations using the finite element technique", Comput. Fluids, 1(1), 73-100. https://doi.org/10.1016/0045-7930(73)90027-3
- Toupin, R.A. (1956), "The elastic dielectric", J. Rational Mech. Anal., 5(6), 849-915.
- Vetyukov, Y., Staudigl, E. and Krommer, M. (2018), "Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells", Acta Mechanica, 229(2), 953-974. https://doi.org/10.1007/s00707-017-2046-6
- Vu, D.K., Steinmann, P. and Possart, G. (2007), "Numerical modelling of non-linear electroelasticity", Int. J. Numer. Methods Eng., 70, 685-704. https://doi.org/10.1002/nme.1902
- Xu, B.-X., Mueller,R., Klassen, M. and Gross, D. (2010), "On electromechanical stability analysis of dielectric elastomer actuators", Appl. Phys. Lett., 97, 162908. https://doi.org/10.1063/1.3504702
- Yang, L., Li, X., Allahyarov, E., Taylor, P.L., Zhang, Q.M. and Zhu, L. (2013), "Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect", Polymer, 54, 1709-1728. https://doi.org/10.1016/j.polymer.2013.01.035
- Zah, D. and Miehe, C. (2015), "Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models", Computat. Methods Appl. Mech. Eng., 286, 394-421. https://doi.org/10.1016/j.cma.2014.12.017