DOI QR코드

DOI QR Code

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid (Institute of Technical Mechanics, Johannes Kepler University Linz) ;
  • Krommer, Michael (Institute of Technical Mechanics, Johannes Kepler University Linz) ;
  • Humer, Alexander (Institute of Technical Mechanics, Johannes Kepler University Linz)
  • 투고 : 2015.12.26
  • 심사 : 2016.01.15
  • 발행 : 2022.09.25

초록

This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

키워드

과제정보

This work has been partially supported by the Linz Center of Mechatronics (LCM) in the framework of the Austrian COMET-K2 programme.

참고문헌

  1. Amini, A., Mohammadimehr, M. and Faraji, A. (2020), "Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm", Smart Struct. Syst., Int. J., 26(6), 721-733. https://doi.org/10.12989/sss.2020.26.6.721
  2. Ask, A., Menzel, A. and Ristinmaa, M. (2012), "Phenomenological modeling of viscous electrostrictive polymers", Int. J. Non-Linear Mech., 47, 156-165. https://doi.org/10.1016/j.ijnonlinmec.2011.03.020
  3. Bar-Cohen, Y. (2004), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, Bellingham, WA, USA.
  4. Bonet, J. (2001), "Large strain viscoelastic constitutive models", Int. J. Solids Struct., 38, 2953-2968. https://doi.org/10.1016/S0020-7683(00)00215-8
  5. Bonet, J. and Wood, R.D. (2008), Nonlinear Continuum Mechanics for Finite Element Analysis, (2nd Ed.), Cambridge University Press, Cambridge, UK.
  6. Bustamante, R. (2009), "A variational formulation for a boundary value problem considering an electro-sensitive elastomer interacting with two bodies", Mech. Res. Commun., 36, 791-795. https://doi.org/10.1016/j.mechrescom.2009.05.009
  7. Cao, Y., Zandi, Y., Gholizadeh, M., Fu, L., Du, J., Qian, X., Wang, Z., Roco-Videla, A., Selmi, A. and Issakhov, A. (2021), "Optimization algorithms for composite beam as smart active control of structures using genetic algorithms", Smart Struct. Syst., Int. J., 27(6), 1041-1052. https://doi.org/10.12989/sss.2021.27.6.1041
  8. Diaconu, I., Dorohoi, D.O. and Ciobanu, C. (2008), "Electromechanical response of polyurethane films with different thickness", Roman. J. Phys., 53(1-2), 91-97.
  9. Dorfmann, A. and Ogden, R.W. (2005), "Nonlinear electroelasticity", Acta Mechanica, 174, 167-183. https://doi.org/10.1007/s00707-004-0202-2
  10. Eringen, A.C. and Maugin, G.A. (1990), Electrodynamics of Continua I: Foundations and Solid Media, Springer, New York, NY, USA.
  11. Gao, Z., Tuncer, A. and Cuitino, A.M. (2011), "Modeling and simulation of the coupled mechanical-electrical response of soft solids", Int. J. Plasticity, 27(10), 1459-1470. https://doi.org/10.1016/j.ijplas.2010.07.006
  12. Goncalves, J.F., Fonseca, J.S.O. and Silveira, O.A.A. (2016), "A controllability-based formulation for the topology optimization of smart structures", Smart Struct. Syst., Int. J., 17(5), 773-793. https://doi.org/10.12989/sss.2016.17.5.773
  13. Hansy-Staudigl, E. and Krommer, M. (2021), "Electrostrictive polymer plates as electro-elastic material surfaces: Modeling, analysis, and simulation", J. Intell. Mater. Syst. Struct., 32(3), 296-316. https://doi.org/10.1177/1045389X20935640
  14. Hansy-Staudigl, E., Krommer, M. and Humer, A. (2019), "A complete direct approach to nonlinear modeling of dielectric elastomer plates", Acta Mechanica, 230, 3923-3943. https://doi.org/10.1007/s00707-019-02529-1
  15. Hom, C.L. and Shankar, N. (1994), "A fully coupled constitutive model for electrostrictive ceramic materials", J. Intell. Mater. Syst. Struct., 5, 795-801. https://doi.org/10.1177/1045389X9400500610
  16. Humer, A. and Krommer, M. (2015), "Modeling of piezoelectric materials by means of a multiplicative decomposition of the deformation gradient", Mech. Adv. Mater. Struct., 22, 125-135. https://doi.org/10.1080/15376494.2014.907948
  17. Humer, A., Pechstein, A.S., Meindlhumer, M. and Krommer, M. (2020), "Nonlinear electromechanical coupling in ferroelectric materials: large deformation and hysteresis", Acta Mechanica, 231, 2521-2544. https://doi.org/10.1007/s00707-020-02657-z
  18. Kamlah, M. (2001), "Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena", Continuum Mech. Thermodyn., 13, 219-268. https://doi.org/10.1007/s001610100052
  19. Katsouras, I., Asadi, K., Li, M., Van Driel, T.B., Kjaer, K.S., Zhao, D., Lenz, T., Gu, Y., Blom, P.W., Damjanovic, D. and Nielsen, M.M. (2016), "The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene uoride)", Nature Mater., 15, 78-84. https://doi.org/10.1038/nmat4423
  20. Klinkel, S. (2006), "A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics", Int. J. Solids Struct., 43(22-23), 7197-7222. https://doi.org/10.1016/j.ijsolstr.2006.03.008
  21. Klinkel, S., Zwecker, S. and Mueller, R. (2013), "A solid shell finite element formulation for dielectric elastomers", J. Appl. Mech., 80, 021026-1-021026-11. https://doi.org/10.1115/1.4007435
  22. Lubarda, V.A. (2004), "Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics", Appl. Mech. Rev., 57(4), 95-108. https://doi.org/10.1115/1.1591000
  23. Maugin, G.A. (1988), Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam, The Netherlands.
  24. McMeeking, R.M. and Landis, C.M. (2005), "Electrostatic forces and stored energy for deformable dielectric materials", J. Appl. Mech., 72(4), 581-590. https://doi.org/10.1115/1.1940661
  25. Mehnert, M., Hossain, M. and Steinmann, P. (2016), "On nonlinear thermo-electro-elasticity", Proceedings of the Royal Society A, 472, 20160170-1-20160170-23.
  26. Moghadam, A.A.A., Kouzani, A., Zamani, R., Magniez, K. and Kaynak, A. (2015), "Nonlinear large deformation dynamic analysis of electroactive polymer actuators", Smart Struct. Syst., Int. J., 15(6), 1601-1623. https://doi.org/10.12989/sss.2015.15.6.1601
  27. Mukherjee, S. and Ganguli, R. (2010), "A dragonfly inspired apping wing actuated by electro active polymers", Smart Struct. Syst., Int. J., 6(7), 867-887. https://doi.org/10.12989/sss.2010.6.7.867
  28. Mura, T. (1987), Micromechanics of Defects in Solids, (2nd Ed.), Springer, Netherlands.
  29. Pao, Y.H. (1978), "Electromagnetic forces in deformable continua", In: Nemat-Nasser S (Ed.), Mechanics Today, 4, Pergamon Press, Oxford, pp. 209-306.
  30. Pechstein, A.S. (2019), "Large deformation mixed finite elements for smart structures", Mech. Adv. Mater. Struct., 27(23), 1983-1993. https://doi.org/10.1080/15376494.2018.1536932
  31. Pechstein, A.S., Meindlhumer, M. and Humer, A. (2021), "Highorder mixed finite elements for an energy-based model of the polarization process in ferroelectric materials", J. Intell. Mater. Syst. Struct., 32(3), 355-368. https://doi.org/10.1177/1045389X20953895
  32. Pelrine, R.E., Kornbluh, R.D. and Joseph, J.P. (1998), "Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation", Sensors and Actuators A: Physical, 64, 77-85. https://doi.org/10.1016/S0924-4247(97)01657-9
  33. Prechtl, A. (1982a), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 1: Grundgleichungen und allgemeine Materialbeziehungen", Archiv fur Elektrotechnik, 65(3), 167-177. https://doi.org/10.1007/BF01578704
  34. Prechtl, A. (1982b), "Eine Kontinuumstheorie elastischer Dielektrika. Teil 2: Elektroelastische und elastooptische Erscheinungen", Archiv fur Elektrotechnik, 65(4), 185-194. https://doi.org/10.1007/BF01452139
  35. Reissner, H. (1931), "Eigenspannungen und Eigenspannungsquellen", Zeitschrift fur Angewandte Mathematik und Mechanik, 11(1), 59-70. https://doi.org/10.1002/zamm.19310110101
  36. Skatulla, S., Sansour, C. and Arockiarajan, A. (2012), "A multiplicative approach for nonlinear electro-elasticity", Comput. Methods Appl. Mech. Eng., 245-246, 243-255. https://doi.org/10.1016/j.cma.2012.07.002
  37. Staudigl, E., Krommer, M. and Vetyukov, Y. (2018), "Finite deformations of thin plates made of dielectric elastomers: Modeling, numerics, and stability", J. Intell. Mater. Syst. Struct., 29(17), 3495-3513. https://doi.org/10.1177/1045389X17733052
  38. Su, J., Harrison, J., Clair, T., Bar-Cohen, Y. and Leary, S. (1999), "Electrostrictive grafr elastomers and applications", MRS Online Proceedings Library, 600, 131-136. https://doi.org/10.1557/PROC-600-131
  39. Suo, Z. (2010), "Theory of dielectric elastomers", Acta Mechanica Solida Sinica, 23(6), 549-578. https://doi.org/10.1016/S0894-9166(11)60004-9
  40. Taylor, C. and Hood, P. (1973), "A numerical solution of the Navier-Stokes equations using the finite element technique", Comput. Fluids, 1(1), 73-100. https://doi.org/10.1016/0045-7930(73)90027-3
  41. Toupin, R.A. (1956), "The elastic dielectric", J. Rational Mech. Anal., 5(6), 849-915.
  42. Vetyukov, Y., Staudigl, E. and Krommer, M. (2018), "Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells", Acta Mechanica, 229(2), 953-974. https://doi.org/10.1007/s00707-017-2046-6
  43. Vu, D.K., Steinmann, P. and Possart, G. (2007), "Numerical modelling of non-linear electroelasticity", Int. J. Numer. Methods Eng., 70, 685-704. https://doi.org/10.1002/nme.1902
  44. Xu, B.-X., Mueller,R., Klassen, M. and Gross, D. (2010), "On electromechanical stability analysis of dielectric elastomer actuators", Appl. Phys. Lett., 97, 162908. https://doi.org/10.1063/1.3504702
  45. Yang, L., Li, X., Allahyarov, E., Taylor, P.L., Zhang, Q.M. and Zhu, L. (2013), "Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect", Polymer, 54, 1709-1728. https://doi.org/10.1016/j.polymer.2013.01.035
  46. Zah, D. and Miehe, C. (2015), "Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models", Computat. Methods Appl. Mech. Eng., 286, 394-421. https://doi.org/10.1016/j.cma.2014.12.017