References
- Ali, I. and Gupta, V.K. (2006), "Advances in water treatment by adsorption technology", Nat. Protoc., 1(6), 2661-2667. https://doi.org/10.1038/nprot.2006.370
- Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A. and Jassim, A.N. (2015), "Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization", Nanosci. Nanotechnol., 5(1), 1-6. https://doi.10.5923/j.nn.20150501.01
- Anwer, S., Anjum, D.H., Luo, S., Abbas, Y., Li, B., Iqbal, S. and Liao, K. (2021), "2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination", Chem. Eng. J., 406, 126827. https://doi.org/10.1016/j.cej.2020.126827
- Chen, S., Wang, C., Bunes, B.R., Li, Y., Wang, C. and Zang, L. (2015), "Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates", Appl. Catal. A: General, 498, 63-68. https://doi.org/10.1016/j.apcata.2015.03.026
- Dong, G., Zhao, K. and Zhang, L. (2012), "Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4", Chem. Commun., 48(49), 6178-6180. https://doi.org/10.1039/C2CC32181E
- Feng, L.L., Zou, Y., Li, C., Gao, S., Zhou, L.J., Sun, Q., Fan, M., Wang, H., Wang, D., Li, G.D. and Zou, X. (2014), "Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-lightdriven H2 evolution", Int. J. Hydrogen Energy, 39(28), 5373-15379. https://doi.org/10.1016/j.ijhydene.2014.07.160
- Height, M.J., Pratsinis, S.E., Mekasuwandumrong, O. and Praserthdam, P. (2006), "Ag-ZnO catalysts for UV-photodegradation of methylene blue", Appl. Catal. B: Environ., 63(3-4), 305-312. https://doi.org/10.1016/j.apcatb.2005.10.018
- Hong, J., Xia, X., Wang, Y. and Xu, R. (2012), "Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light", J. Mater. Chem., 22(30), 15006-15012. https://doi.org/10.1039/C2JM32053C
- Hussain, W., Badshah, A., Hussain, R.A., Aleem, M.A., Bahadur, A., Iqbal, S., Farooq, M.U. and Ali, H. (2017), "Photocatalytic applications of Cr2S3 synthesized from single and multi-source precursors", Mater. Chem. Phys., 194, 345-355. https://doi.org/10.1016/j.matchemphys.2017.04.001
- Iqbal, S. (2020), "Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nanoheterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution", Appl. Catal. B: Environ., 274, 119097. https://doi.org/10.1016/j.apcatb.2020.119097
- Iqbal, S., Pan, Z. and Zhou, K. (2017), "Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures", Nanoscale, 9(20), 6638-6642. https://doi.org/10.1039/C7NR01705G
- Iqbal, S., Javed, M., Bahadur, A., Qamar, M.A., Ahmad, M., Shoaib, M., Raheel, M., Ahmad. N., Akbar. M.B. and Li, H. (2020), "Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly (acrylic acid) microgel shell for efficient removal of methylene blue under visible light", J. Mater. Sci.: Mater. Electron., 31(11), 8423-8435. https://doi.org/10.1007/s10854-020-03377-9
- Irfan, R.M., Tahir, M.H., Khan, S.A., Shaheen, M.A., Ahmed, G. and Iqbal, S. (2019), "Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution", J. Colloid Interface Sci., 557, 1-9. https://doi.org/10.1016/j.jcis.2019.09.014
- Irfan, R.M., Tahir, M.H., Maqsood, M., Lin, Y., Bashir, T., Iqbal, S., Zhao, J., Gao, L. and Haroon, M. (2020), "CoSe as non-noble-metal cocatalyst integrated with heterojunction photosensitizer for inexpensive H2 production under visible light", J. Catal., 390, 196-205. https://doi.org/10.1016/j.jcat.2020.07.034
- Jaramillo-Paez, C., Navio, J.A., Hidalgo, M.C. and Macias, M. (2017), "High UV- photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method", Catal. Today, 284, 121-128. https://doi.org/10.1016/j.cattod.2016.11.021
- Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z. and Wang, H. (2017), "Doping of graphitic carbon nitride for photocatalysis: a review", Appl. Catal. B: Environ., 217, 388-406. https://doi.org/10.1016/j.apcatb.2017.06.003
- Jing, L., Xu, Y., Huang, S., Xie, M., He, M., Xu, H., Li, H. and Zhang, Q. (2016), "Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity", Appl. Catal. B: Environ., 199, 11-22. https://doi.org/10.1016/j.apcatb.2016.05.049
- Jourshabani, M., Shariatinia, Z. and Badiei, A. (2017), "Controllable synthesis of mesoporous sulfur-doped carbon nitride materials for enhanced visible light photocatalytic degradation", Langmuir, 33(28), 7062-7078. https://doi.org/10.1021/acs.langmuir.7b01767
- Khan, S.B., Rahman, M.M., Marwani, H.M., Asiri, A.M. and Alamry, K.A. (2013), "An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium", Nanosc. Res. Lett., 8(1), 377. https://doi.org/10.1186/1556-276X-8-377
- Kim, S.P., Choi, M.Y. and Choi, H.C. (2016), "Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation", Mater. Res. Bull., 74, 85-89. https://doi.org/10.1016/j.materresbull.2015.10.024
- Kumar, S.G. and Rao, K.K. (2015), "Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications", Rsc Adv., 5(5), 3306-3351. https://doi.org/10.1039/C4RA13299H
- Kumar, R., Rana, D., Umar, A., Sharma, P., Chauhan, S. and Chauhan, M.S. (2015), "Ag-doped ZnO nanoellipsoids: Potential scaffold for photocatalytic and sensing applications", Talanta, 137, 204-213. https://doi.org/10.1016/j.talanta.2015.01.039
- Kuo, W.S. and Ho, P.H. (2001), "Solar photocatalytic decolorization of methylene blue in water", Chemosphere, 45(1), 77-83. https://doi.org/10.1016/S0045-6535(01)00008-X
- Kuriki, R., Sekizawa, K., Ishitani, O. and Maeda, K. (2015), "Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts", Angew. Chem., Int. Ed., 54(8), 2406-2409. https://doi.org/10.1002/anie.201411170
- Linsebigler, A.L., Lu, G. and Yates Jr, J.T. (1995), "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev., 95(3), 735-758. https://doi.org/10.1021/cr00035a013
- Liu, G., Niu, P., Sun, C., Smith, S.C., Chen, Z., Lu, G.Q. and Cheng, H.M. (2010), "Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4", J. Am. Chem. Soc., 132(33), 11642-11648. https://doi.org/10.1021/ja103798k
- Pare, B., Jonnalagadda, S., Tomar, H., Singh, P. and Bhagwat, V. (2008), "ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation", Desalination, 232, 80-90. https://doi.org/10.1016/j.desal.2008.01.007
- Qamar, M.A., Shahid, S., Khan, S.A., Zaman, S. and Arwar, M.N. (2017), "Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles", Digest J. Nanomater. Biostruct., 12(4), 1127-1135.
- Qamar, M.A., Shahid, S. and Javed, M. (2020a), "Synthesis of dynamic g-C3N4/Fe@ ZnO nanocomposites for environmental remediation applications", Ceram. Int., 46(14), 22171-22180. https://doi.org/10.1016/j.ceramint.2020.05.294
- Qamar, M.A., Shahid, S., Javed, M., Iqbal, S., Sher, M. and Akbar, M.B. (2020b), "Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity", J. Photochem. Photobiol. A: Chem., 401, 112776. ttps://doi.org/10.1016/j.jphotochem.2020.112776
- Qamar, M.A., Javed, M., Shahid, S., Iqbal, S., Abubshait, S.A., Abubshait, H.A., Ramay. S.M., Mehmood, A and Ghaithan, H.M. (2021a), "Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light", J. Environ. Chem. Eng., 9(4), 105534. https://doi.org/10.1016/j.jece.2021.105534
- Qamar, M.A., Shahid, S., Javed, M., Iqbal, S., Sher, M., Bahadur, A., AL-Anazy, M.M., Laref, A. and Li, D. (2021b), "Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations", Colloids Surf. A Physicochem. Eng. Asp., 614, 126176. https://doi.org/10.1016/j.colsurfa.2021.126176
- Qamar, M.A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, A. and Li, D. (2021c), "Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations", Colloids Surf. A Physicochem. Eng. Asp., 611, 125863. https://doi.org/10.1016/j.colsurfa.2020.125863
- Ran, J., Ma, T.Y., Gao, G., Du, X.W. and Qiao, S.Z. (2015), "Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production", Energy Environ. Sci., 8(12), 3708-3717. https://doi.org/10.1039/C5EE02650D
- Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064
- Sher, M., Javed, M., Shahid, S., Hakami, O., Qamar, M.A., Iqbal, S., Al-Anazy, M.M. and Baghdadi, H.B. (2021a), "Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiation", J. Photochem. Photobiol. A: Chem., 418, 113393. https://doi.org/10.1016/j.jphotochem.2021.113393
- Sher, M., Javed, M., Shahid, S., Iqbal, S., Qamar, M.A., Bahadur, A. and Qayyum, M.A. (2021b), "The controlled synthesis of g-C3N4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiation", RSC Adv., 11(4), 2025-2039. https://doi.org/10.1039/d0ra08573a
- Sher, M., Khan, S.A., Shahid, S., Javed, M., Qamar, M.A., Chinnathambi, A. and Almoallim, H. (2021c), "Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light-driven methylene blue degradation and antibacterial activities", J. Environ. Chem. Eng., 9(4), 105366. https://doi.org/10.1016/j.jece.2021.105366
- Subramanian, V., Wolf, E. and Kamat, P.V. (2001), "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?", J. Phys. Chem. B., 105(46), 11439-11446. https://doi.org/10.1021/jp011118k
- Thi, V.H.T. and Lee, B.K. (2017), "Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method", J. Hazard. Mater., 324, 329-339. https://doi.org/10.1016/j.jhazmat.2016.10.066
- Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y., Fu, X. and Antonietti, M. (2009), "Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light", J. Am. Chem. Soc., 131(5), 680-1681. https://doi.org/10.1021/ja809307s
- Wang, Y., Li, H., Yao, J., Wang, X. and Antonietti, M. (2011), "Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation", Chem. Sci., 2(3), 446-450. https://doi.org/10.1039/C0SC00475H
- Wang, K., Li, Q., Liu, B., Cheng, B., Ho, W. and Yu, J. (2015), "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance", Appl. Catal. B: Environ., 176, 44-52. https://doi.org/10.1016/j.apcatb.2015.03.045
- Zhang, J., Chen, Y. and Wang, X. (2015), "Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications", Energy Environ. Sci., 8(11), 3092-3108. https://doi.org/10.1039/C5EE01895A
- Zhang, W., Zhang, J., Dong, F. and Zhang, Y. (2016), "Facile synthesis of in situ phosphorus-doped gC3N4 with enhanced visible light photocatalytic property for NO purification", Rsc Adv., 6(91), 88085-88089. https://doi.org/10.1039/C6RA18349B