
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, Aug. 2022 2507
Copyright ⓒ 2022 KSII

This research of Wuhan University was supported in part by the National Key R&D Program of China under grant
No. 2021YFB2700200, the Fundamental Research Funds for the Central Universities under grants No.
2042022kf1195, 2042022kf0046, and the National Natural Science Foundation of China under grants No.
U1836202, 62076187, 62172303

http://doi.org/10.3837/tiis.2022.08.003 ISSN : 1976-7277

Surveillant: a supervision mechanism
between blockchains for efficient cross-

chain verification

Xinyu Liang1*, Jing Chen2, Ruiying Du3, and Tianrui Zhao4
1 2 3 4 School of Cyber Science and Engineering, Wuhan University

Wuhan, 430072 China
1 [e-mail: liangxinyu@whu.edu.cn]

2 [e-mail: chenjing@whu.edu.cn]
3 [e-mail: duraying@126.com]

4 [e-mail: zhaotianrui@whu.edu.cn]
* Corresponding author: Xinyu Liang

Received December 23, 2021; revised February 12, 2022; revised June 1, 2022; accepted July 8, 2022;

published August 31, 2022

Abstract

Blockchain interoperability, which refers in particular to the ability to access information
across blockchain systems, plays the key role for different blockchains to communicate with
each other, and further supports the superstructure built on top of the cross-chain mechanism.
Nowadays, blockchain interoperability technology is still in its infancy. The existing cross-
chain scheme such as BTCRelay requires that the smart contract in a blockchain to download
and maintain block headers of the other blockchain, which is costly in maintenance and
inefficient to use. In this paper, we propose a supervision mechanism between blockchains,
called Surveillant. Specially, the new entities called dual-functional nodes are introduced to
commit the real-time information from the blockchain under supervision to the supervising
blockchain, which enables users to have efficient cross-chain verification. Furthermore, we
introduce Merkle mountain range for blocks aggregation to deal with the large-scale
committing data. We propose the design of long orphan branch counter to trace the bifurcations
in the blockchain under supervision. The existing incentive mechanism is improved to
encourage the behaviors of dual-functional nodes. In Surveillant, the analysis and
experimental results demonstrate that users are able to have efficient cross-chain verification
with low maintenance overhead.

Keywords: blockchain interoperability, cross-chain, BTCRelay.

2508 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

1. Introduction

In recent years, we have witnessed the rapid development of blockchain technology.
Researchers have made considerable effort to improve the performance of blockchain, such as
more efficient consensus protocols [1], better privacy protection [2], improving throughput by
state channels [3] and sharding protocols [4]. Based on the works above, Blockchain has been
widely used in various fields, such as the payment platform [5], smart contract [6], privacy
preserving [7], etc.

Although the number and variety of blockchain applications are increasing, these
applications remain mutually isolated, in which each blockchain only operates within its own
ecosystem. Subsequently, a new demand of achieving blockchain interoperability [8] has
naturally emerged. It requires to establish a secure and practical cross-chain mechanism to
transfer information across blockchains. By this mechanism, different blockchain systems
begin to communicate with one another to form a blockchain web, which is invaluable for next
generation blockchain technology [9].

Illustrated by Vitalik Buterin [9], the existing research on blockchain interoperability can
be classified into three categories, which are notary scheme, hash-locking, and chain relay.
First, in the notary schemes [10], the information is transferred between blockchains by a
trusted third party, which has potential security vulnerability. Second, the hash-locking [11] is
adopted to ensure the atomicity [12] of the operations on different blockchains. However, in
this scheme, the information transferred between blockchains is very limited, which cannot
support complex cross-chain operations. Third, in the chain relay schemes [13] [14], the smart
contract in the first blockchain will receive and maintain the SPV proof of the second
blockchain delivered by a group of relayers. It enables programmatic public cross-chain
verification, which has the advantages in security and functionality compared with the notary
scheme and hash-locking.

However, the existing chain relay schemes still suffer from several drawbacks as follows.
First, as the chain relay schemes require to maintain the SPV proof of the other blockchain, it
is comparable to that the smart contract additionally maintain a light client of the other
blockchain, which is costly in maintenance and inefficient to use. Second, as a blockchain
includes thousands or millions of blocks, how to commit the large-scale blocks across
blockchains becomes a problem. Moreover, because blockchain has a dynamic changing data
structure, a block having been included in the blockchain before has the possibility to be
orphaned in a future time, which brings the problem such as double-spending. It requires an
efficient retrieval mechanism for a blockchain to supervise the orphan branches in the other
blockchain, which ensures that the bifurcation in the other blockchain can be detected in time.

In this paper, to overcome the above issues, we propose a supervision mechanism between
blockchains, called Surveillant, which includes three protocols: listen, record, and query. In
protocol: listen, we introduce new entity called dual-functional node D𝑆𝑆. D𝑆𝑆 listens for the
latest state of the blockchain ℛ under supervision, and maintains its real-time data. In protocol:
record, D𝑆𝑆 generates new block for the supervising blockchain 𝒮𝒮. A commitment of the real-
time data of ℛ will be recorded into the 𝒮𝒮 block. By the recording process, 𝒮𝒮 and ℛ achieve
blockchains synchronization, which is further illustrated in Section 6. In protocol: query, a
user using an 𝒮𝒮 client U𝑆𝑆 is able to have cross-chain verification to ℛ by using the
synchronization between 𝒮𝒮 and ℛ. The cross-chain verification can be as nearly efficient as
the verification to the local transactions in 𝒮𝒮.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2509

In summary, we make the following contributions:
1. We propose a supervision mechanism between blockchains. In this mechanism, new

entities called dual-functional nodes are introduced to listen for the blockchain under
supervision, and record the real-time commitment of it into the supervising blockchain,
achieving a blockchain synchronization. Through this design, a user is able to have cross-
chain verification effectively.

2. To process the large-scale blocks in the blockchain under supervision, we introduce
Merkle mountain range for blocks aggregation to cut down the storage overhead. To trace
the bifurcations in the blockchain under supervision, we propose the design of
LOBCounter for efficient orphan branch retrieval. Moreover, the existing incentive
mechanism is improved to encourage the behaviors of dual-functional nodes.

3. We analyze the security, time delay, and overhead of Surveillant in theory. Moreover,
we implement a proof-of-concept prototype and evaluate the performance of Surveillant
in practice.

This paper is organized as follows. In Section 2, we have a discussion about the existing
schemes for blockchain interoperability. In Section 3, we review the preliminary knowledge
related to our following design. We have a description about the system model, threat model,
and design goals in Section 4. We have a design to the framework of Surveillant in Section 5,
describe the details of blockchain synchronization in Section 6, and further analyze its security
and performance of in Section 7. In Section 8, we describe the simulation experiment of
Surveillant, and evaluate the result by comparing it with other schemes. Finally, we conclude
in Section 9.

2. Related Work
The existing schemes for blockchain interoperability can be classified into three categories,

which are notary scheme, hash-locking scheme, and chain relay scheme. In the notary scheme
[10], the blockchain information is transferred by a trusted notary group, which has potential
security vulnerability.

In the hash-locking scheme [11], the operations in two blockchains are sealed by the same
hash lock in advance. The operations can be triggered in the same time by revealing the
preimage of the hash lock, or none of the operations can be executed, which ensures the
atomicity. By virtue of this property, the hash-locking scheme has been adopted in atomic
cross-chain swap [12]. However, the drawback of the scheme is that the information carried
by the preimage is very limited. It results that the hash-locking scheme cannot support the
complex cross-chain operations which require to transfer concrete state information of a
blockchain.

In the chain relay scheme such as the Ethereum project BTCRelay [13], a group of relayers,
which act as the intermediaries, deliver every block header of Bitcoin to the smart contract of
Ethereum. Hence, the smart contract provides the functionality comparable to a Bitcoin light
client. First, based on the smart contract, the users of Ethereum are able to verify the
transactions in Bitcoin, which achieves a cross-chain transaction verification. Second, because
the block headers in the smart contract include the complete proof-of-work of Bitcoin, the
validity of the block headers can be proved by the proof-of-work itself, which removes the
dependence to trust the intermediary. For these advantages, chain relay scheme has broader
application space.

2510 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

In the following work, XCLAIM [14] achieves trustless cross-chain exchanges by using
chain relay scheme. The cross-chain protocols in XCLAIM require a publicly verifiable audit
log of user actions on both blockchains, in which the chain relay scheme plays an essential
role in cross-chain verification. However, as the smart contract still has to maintain every block
header of the other blockchain, the overhead of XCLAIM remains too large.

Nowadays, with the popularization of blockchain technology, the application scenario of
blockchain is no longer limited to cryptocurrency, but tends to be diversified and self-
organized. For example, BlocHIE [15] establishes a platform for healthcare information
exchange by using two loosely-coupled blockchain. Ferrag [16] provides an overview of
different application domains of blockchain technologies in internet of things, and further
evaluates their security and privacy in [17]. Jiang [18] proposes a fair transaction packing
algorithm for permissioned blockchain-empowered industrial IoT systems. As the different
blockchain applications are built independently, one blockchain cannot guarantee the security
of the other blockchain. Consequently, a corruption in a blockchain is able to influence the
other blockchain if a cross-chain linking exists between them. Therefore, it is necessary for a
blockchain to establish a supervision mechanism to monitor the state of the other blockchain
that has a cross-chain linking with it, which prevents the exotic corruption.

3. Preliminary

3.1 Merkle Proof
In Bitcoin, the transactions in a block are aggregated by Merkle tree, and the Merkle tree

root as a commitment to the transactions is recorded into the block header. In the condition
when the validity of the block header has been confirmed, a given transaction in the block can
be further verified by a Merkle proof (also known as SPV proof) (see Fig. 1) linking the
transaction with the Merkle tree root in the header.

Definition 1 (Merkle Proof). In a Merkle tree 𝒯𝒯, a Merkle proof 𝛱𝛱𝐷𝐷𝑖𝑖

𝒯𝒯 to data 𝐷𝐷𝑖𝑖 is the siblings
of the nodes in the Merkle tree path from 𝐻𝐻(𝐷𝐷𝑖𝑖) to 𝒯𝒯 root. The length of 𝛱𝛱𝐷𝐷𝑖𝑖

𝒯𝒯 is at most the
height of 𝒯𝒯 , which equals ⌈𝑙𝑙𝑙𝑙𝑔𝑔2(𝑛𝑛)⌉. For the given root of 𝒯𝒯 and the 𝛱𝛱𝐷𝐷𝑖𝑖

𝒯𝒯 of 𝐷𝐷𝑖𝑖 , the 𝐷𝐷𝑖𝑖 is
proved to be included in 𝒯𝒯 when each parent node following the Merkle tree path is
recursively hashed from its two children, and the final hash equals the value of 𝒯𝒯 root.

D1 D2 D3 D4 D5 D6 D7 D8

H11 H12H9H8H5H4H2H1

H3 H6 H10 H13

H7 H14

H15

Fig. 1. Merkle proof. For the given data 𝐷𝐷7 and the Merkle tree root hash 𝐻𝐻15 (marked by brown), 𝐷𝐷7
can be proved to be included in the Merkle tree if 𝐻𝐻15 = 𝐻𝐻 �𝐻𝐻7 || 𝐻𝐻�𝐻𝐻10 || 𝐻𝐻(𝐻𝐻(𝐷𝐷7) || 𝐻𝐻12)��. The
value 𝐻𝐻12, 𝐻𝐻10, and 𝐻𝐻7 (marked by dark blue) are the Merkle proof 𝛱𝛱𝐷𝐷7

𝒯𝒯 to 𝐷𝐷7. 𝛱𝛱𝐷𝐷7
𝒯𝒯 are the siblings of

𝐻𝐻11, 𝐻𝐻13, and 𝐻𝐻14 (marked by light blue), which are in the Merkle tree path linking 𝐷𝐷7 to 𝐻𝐻15.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2511

3.2 Longest Chain Rule
Because of the network latency or intentional attack (see Section 3.3), different bookkeepers

have disagreements to the current blockchain state. To deal with this problem, every honest
bookkeeper adapts and mines on the longest chain, and the shorter block chains stop to grow,
in which we say that the block chains are orphaned. The longest chain rule ensures that the
bookkeepers distributed in the network tends to work on the longest chain maintained by the
honest majority.

Definition 2 (Block chain). For any given block 𝐵𝐵𝑗𝑗, there is only path to traverse from 𝐵𝐵𝑗𝑗 to
the genesis block 𝐵𝐵1 in which the traversal follows the hash pointers of the blocks in the path.
We define that the blocks in the path form a block chain 𝐶𝐶𝑗𝑗. The block chain height of 𝐶𝐶𝑗𝑗 equals
𝑗𝑗.

3.3 Orphan Block Phenomenon
Orphan block, sometimes referred to as stale block, are the block directly or indirectly

pointing to a block in the longest chain, but not included in the longest chain. When several
continuous orphan blocks hanging outside the longest chain, we call them an orphan branch
(see Fig. 2). An orphan branch has two attributes, which are length and bifurcation point. A
long orphan branch has the length exceeding the security threshold 𝜖𝜖.

• The length of an orphan branch equals the number of the orphan blocks included in
the branch.

• The bifurcation point is the block in the longest chain which the orphan branch points
to.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

B4' B6' B7' B8'

B11 B12 B13

B10' B11' B12'

B14

Genesis
Block

Orphan Block Orphan Branch

Main Chain
Fig. 2. Block chains and orphan branches. For any given block such as 𝐵𝐵12′, there is only path to

traverse from 𝐵𝐵12′ to the genesis block 𝐵𝐵1. The blocks in the path form the block chain 𝐶𝐶12′, which is
marked by red. For all of the block chains in this figure, 𝐶𝐶14 is known as the longest chain (For

convenience, we draw only 14 blocks in the longest chain). Moreover, 𝐵𝐵4′ is an orphan block. The
orphan blocks “← 𝐵𝐵6′ ← 𝐵𝐵7′ ← 𝐵𝐵8′” form an orphan branch, whose length is 3, and bifurcation point

is 𝐵𝐵5. As the honest majority of bookkeepers will adapt and mine on the longest chain, the block chain
𝐶𝐶12′ is tending to be orphaned, in which it includes the orphan branch “← 𝐵𝐵10′ ← 𝐵𝐵11′ ← 𝐵𝐵12′” at its

tail end.

The causes of orphan block can be classified into two categories, which are network latency

and intentional attack.
Network Latency. Since the network latency, the transmission of a newly generated block

between nodes takes time. For this reason, there is a possibility that a group of miners having
not received the newly generated block still mine on the old block chain. Consequently, a
bifurcation occurs to produce two branches, and one branch will be orphaned eventually.
Illustrated by Christian [19], the scale of the nodes that have received the new block has high
possibility to reach majority within a certain time latency. By properly setting the block
generation rate [20], the orphan blocks caused by network latency will be kept in a small scale.

2512 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

Lucianna [21] further indicates that the probability of a block to be orphaned drops
exponentially with its confirmation increasing. We usually assert that a block is stable when
its confirmation has exceeded the threshold 𝜖𝜖. In Bitcoin for example, 𝜖𝜖 usually defaults to 6
blocks.

Intentional Attack. Compared with the orphan blocks caused by network latency, the
orphan blocks caused by intentional attacks are more harmful, such as selfish mining [22],
bribery attack [23], and majority attack. In the selfish mining for example, a malicious mining
pool intentionally keeps its mined blocks private, bifurcating the blockchain to create a secret
branch. The secret branch is judiciously revealed when it takes chance to have more blocks
than the public branch mining by the honest miners. Following the longest chain rule, the
honest miners turn to mine on the revealed secret branch, leaving the public branch orphaned.
Furthermore, the bifurcation may lead to a serial of problems, such as double-spending.

3.4 Full Node and Light Client
Full Node. A “full node” exists by default in a blockchain. The full node is responsible for

verifying, storing and relaying the blocks and transactions on the network. Because of the
trustless network environment and the nature of a blockchain, each full node needs to
download and verify every single block, and therefore every single transaction in each block.
Besides, the full node works full-time to keep tracking the state change of blockchain. Based
on the functions of full node, organizations and individuals, such as miners, block explorers,
and exchanges, run full nodes for their business.

Light Client. A light client, sometimes referred to as light node, is an end-user software
that connects to full nodes to interact with the blockchain. Unlike the full node, light client
does not need to work full-time or maintain the complete information of the blockchain. In a
high level of security, a light client needs to download and verify every block header of the
blockchain. To verify a certain transaction in a block, the light client will further download the
Merkle proof linking the transaction to the header of the block. The overall verification process
is achieved cryptographically, in which the light client does not need to trust the full node for
every request.

4. Problem Statement

4.1 System Model
In Surveillant, one blockchain is able to have supervision to several blockchains in the same

time. For convenience, in the following content, we discuss the only the supervision between
two blockchains, which are the supervising blockchain 𝒮𝒮 and the blockchain ℛ under
supervision. The blockchain ℛ is required to be public chain, in which the blockchain data of
ℛ can be received by the nodes of 𝒮𝒮. If the ℛ data keeps secret like the private chain, the
supervision cannot be proceeded.

First, 𝒮𝒮 has well security and stability guarantee such as Bitcoin and Ethereum. In 𝒮𝒮, the
scale of nodes is large enough, which creates a relatively safe environment to resist an
adversary to corrupt the majority of the nodes. For specific performance, the probability of a
bifurcation of depth 𝑛𝑛 drops exponentially with 𝑛𝑛 increasing, and all transactions published by
honest nodes will eventually end up at the depth more than 𝑘𝑘 blocks in the blockchain, which
satisfies the property of persistence and liveness [24].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2513

However, on the other side, the blockchain ℛ is not as well-equipped as 𝒮𝒮. The blockchains
like ℛ are usually applied in various Altcoins or the other scenarios such as the applications
in medical data access [15], and IoT [16]. In some of these situations, the scale of the
participants in the blockchain is relatively limited, and the blockchain is lack of operation and
maintenance. Therefore, we assume that blockchain ℛ is vulnerable to intentional attack, and
orphan block is much easier to be created (see Section 3.3).

The blockchain system of 𝒮𝒮 includes two types of entities, which are dual-functional node
D𝑆𝑆 and client U𝑆𝑆 (see Fig. 3).

Dual-functional node D𝑆𝑆. D𝑆𝑆 is the entity that generates blocks for 𝒮𝒮, which provides the
function comparable to the so-called bookkeeper [25]. Specifically, the group of D𝑆𝑆
interconnect with one another through the peer-to-peer network; D𝑆𝑆 receives and verifies the
new blocks and pending transactions of 𝒮𝒮; D𝑆𝑆 maintains the full blockchain data of 𝒮𝒮; D𝑆𝑆
generates new blocks for 𝒮𝒮.

In the same time, every D𝑆𝑆 listens for the full blockchain data of ℛ, which provides the
function comparable to a listener to ℛ. Specifically, D𝑆𝑆 establishes connections with the nodes
who do not participate in 𝒮𝒮, but generate, transfer, and maintain the blockchain data of ℛ; D𝑆𝑆
receives and verifies the new blocks of ℛ; D𝑆𝑆 maintains the full blockchain data of ℛ. It is
worth noted that D𝑆𝑆 belongs to the entity of 𝒮𝒮 instead of the entity of ℛ, though D𝑆𝑆 receives
the information from ℛ. In this situation, D𝑆𝑆 does not receive the pending transactions of ℛ,
or generate new blocks for ℛ. Consequently, D𝑆𝑆 does not contribute to the blockchain growth
of ℛ.

Comprehensively considering the above dual functions of D𝑆𝑆, D𝑆𝑆 is able to listen for the
information of ℛ, and record the ℛ information into 𝒮𝒮, which achieves a commitment of ℛ.

From the perspective of traditional blockchain, D𝑆𝑆 can be treated as the conventional
bookkeeper with the listening function added, which brings extra workload to the bookkeeper.
For this problem, we propose the commitment reward for the extra workload. By this design,
the improved incentive mechanism is able to encourage D𝑆𝑆 to do both the works of listening
and block generating, by which the information of ℛ will be committed to 𝒮𝒮 in real time.

Clients U𝑆𝑆. U𝑆𝑆 is the end-user software of 𝒮𝒮, in which U𝑆𝑆 is usually the light client. The
main task of U𝑆𝑆 is to query the information in 𝒮𝒮. First, U𝑆𝑆 will download every block header
of 𝒮𝒮 from D𝑆𝑆. To verify a specific transaction in 𝒮𝒮, the U𝑆𝑆 needs to additionally download the
Merkle proof of the transaction from D𝑆𝑆, which is the same with the traditional SPV. To cross-
chain verify a transaction in ℛ, the U𝑆𝑆 needs to download a three-stage Merkle proof of the
transaction. The three-stage Merkle proof includes the Merkle proves in 𝒮𝒮, ℛ and the Merkle
mountain range between them (see Section 6 for more details). As D𝑆𝑆 maintains both the full
blockchain data of 𝒮𝒮 and ℛ, D𝑆𝑆 is able to provide the three-stage Merkle proof. In this process,
U𝑆𝑆 does not need to access the entities other than D𝑆𝑆.

2514 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

···

Blockchain Nodes

 Maintain blockchain R
 Generate R blocks

···

 Dual-functional Nodes

 Maintain blockchain S
 Listen for blockchain R
 Generate S blocks

···

Clients

Block broadcast

Query
Request

 Cross-chain Verification

Merkle Proof
Feedback

System of blockchain S

System of blockchain R
Fig. 3. Framework of Surveillant

4.2 Threat Model
We suppose an adversary is powerful enough to corrupt the blockchain ℛ. For example, in

the blockchain based on Nakamoto consensus protocol, the adversary is able to control more
than 1/3 [22] of the hash power of ℛ. Therefore, ℛ is vulnerable to the damages such as selfish
mining, bribery attack, and majority attack. Consequently, the adversary is able to bifurcate
the blockchain ℛ to orphan a branch and the length of the orphan branch has high possibility
to exceed a threshold 𝜖𝜖, which brings the problem such as double-spending. On the other side,
in 𝒮𝒮, we assume that the corrupted entities of 𝒮𝒮 is bounded by the security threshold, such as
the corrupted hash power is bounded by 1/3 in the blockchain based on Nakamoto consensus
protocol. It ensures the security including the persistence and liveness of 𝒮𝒮.

Furthermore, we assume Surveillant satisfies the following security assumptions. First, we
assume the cryptographic primitives of both 𝒮𝒮 and ℛ are secure. Second, we assume that the
block generation rates of 𝒮𝒮 and ℛ are upper-bounded [20], which can be achieved by
periodically adjusting the difficulty targets of the two blockchains (in PoW protocol). It
ensures that an adversary cannot create unlimited blocks arbitrarily. Third, we assume the
blocks of 𝒮𝒮 and ℛ are broadcast in the peer-to-peer network following the information
propagation model [19] [24], in which the honest majority of D𝑆𝑆 will reach consensus to the
newly generated block of 𝒮𝒮 and ℛ within the time delay 𝛥𝛥𝑆𝑆 and 𝛥𝛥𝑅𝑅. Fourth, we assume that a
user using a client U𝑆𝑆 is connected to at least one honest dual-functional node D𝑆𝑆 , which
means U𝑆𝑆 is not vulnerable to eclipse attack. Defending against such attacks is beyond the
scope of our paper.

4.3 Design Goals
• Reliable information transfer. By introducing dual-functional nodes with improved

incentive mechanism, the commitment to newly generated block of ℛ will be recorded
into 𝒮𝒮 in real time, and the cross-chain commitment recording resists against denial-of-
service attack.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2515

• Efficient cross-chain verification. The operation that a user of 𝒮𝒮 has a cross-chain
verification to ℛ is as nearly efficient as verifying the local information in 𝒮𝒮.

• Low storage overhead. A user of 𝒮𝒮 has cross-chain verification without maintaining the
data of ℛ. Subsequently, the user’s extra storage overhead brought by the cross-chain
requirement is negligible.

4.4 Notations
To facilitate the understanding, we summarize the main notations in this paper in Table 1.

Table 1. Notations

Notation Meaning
𝒮𝒮 Supervising blockchain
ℛ Blockchain being supervised
D𝑆𝑆 Dual-functional node of 𝒮𝒮
U𝑆𝑆 Client of 𝒮𝒮
𝐵𝐵𝑖𝑖𝑆𝑆 Block in 𝒮𝒮, in which 𝑖𝑖 equals the block’s height
𝐵𝐵𝑗𝑗𝑅𝑅 Block in ℛ, in which 𝑗𝑗 equals the block’s height
𝐶𝐶𝑗𝑗𝑅𝑅 Block chain in ℛ formed by the blocks from 𝐵𝐵𝑗𝑗𝑅𝑅 to 𝐵𝐵1𝑅𝑅
𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 Commitment to 𝐶𝐶𝑗𝑗𝑅𝑅, in which 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is recorded into 𝐵𝐵𝑖𝑖𝑆𝑆
𝑇𝑇𝑆𝑆 Transaction in 𝒮𝒮
𝑇𝑇𝑅𝑅 Transaction in ℛ

5. Surveillant Framework

5.1 Overview
In this section, we present Surveillant: an efficient supervision mechanism between

blockchains. For Surveillant in general, the dual-functional node D𝑆𝑆 listens for the blockchain
information of ℛ, generates commitment to the information, and records the commitment into
𝒮𝒮. Subsequently, the clients U𝑆𝑆 is able to have efficient and low-cost cross-chain verification
to the information through the commitment recorded in 𝒮𝒮.

The basic scheme of Surveillant includes three protocols: listen, record, and query. (see Fig.
4)

Query Three-stage
Merkle proof

Long orphan
branch retrieval

Record Merkle mountain
range LOBCounter

Listen P2P
network

Block
verification

OB
inspection

Surveillant

Fig. 4. Architecture of Surveillant

2516 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

5.2 Protocol: Listen

D𝑆𝑆 receives and maintains the full blockchain data of ℛ. Subsequently, D𝑆𝑆 has verification
to the blocks received and inspect any orphan branches occurred in ℛ.

Block verification. D𝑆𝑆 has verification to the correctness of each new 𝐵𝐵𝑗𝑗𝑅𝑅 received. First,
the block header of 𝐵𝐵𝑗𝑗𝑅𝑅 is verified based on the consensus protocol which blockchain ℛ is
using. For PoW consensus protocol, D𝑆𝑆 is required to know the difficulty policy of ℛ, and
verify the correctness of proof-of-work in 𝐵𝐵𝑗𝑗𝑅𝑅. For PoS consensus protocol, such as Ouroboros
[1], D𝑆𝑆 is required to know the leader selecting epochs, and verify the correctness of leader
signature in 𝐵𝐵𝑗𝑗𝑅𝑅 . Second, the transactions in 𝐵𝐵𝑗𝑗𝑅𝑅 is verified, in which the inclusion of a
transaction in 𝐵𝐵𝑗𝑗𝑅𝑅 is required to be proved by a Merkle proof linking the transaction to the root
in 𝐵𝐵𝑗𝑗𝑅𝑅 header.

Orphan branch inspection. Discussed in Section 3.3, orphan blocks are the blocks not
included in the longest chain, and several continuous orphan blocks form an orphan branch. If
the length of an orphan branch has exceeded a threshold 𝜖𝜖, the branch is judged as a long
orphan branch, which brings the problem such as double-spending. In this situation, D𝑆𝑆 will
verify the long orphan branch generated in ℛ, and record its information into 𝒮𝒮.

5.3 Protocol: Record
In this process, a commitment of ℛ will be recorded into each 𝒮𝒮 block. The recording

process includes two steps, which are commitment recording and commitment verification.
Commitment recording. First, at the moment when an 𝒮𝒮 block 𝐵𝐵𝑖𝑖𝑆𝑆 is being generated by a

D𝑆𝑆, the ℛ block chain 𝐶𝐶𝑗𝑗𝑅𝑅 with the largest length among the current ℛ chains maintained by
the D𝑆𝑆 itself is committed by using the data structure of Merkle mountain range [26]. Then the
commitment 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is recorded into the Merkle tree of 𝐵𝐵𝑖𝑖𝑆𝑆.

Second, for the ℛ chain 𝐶𝐶𝑗𝑗′𝑅𝑅 committed by 𝜋𝜋(𝑖𝑖−1)𝑗𝑗′
𝑅𝑅 (𝑗𝑗′ < 𝑗𝑗) in 𝐵𝐵𝑖𝑖−1𝑆𝑆 , if the blocks at the tail

end of 𝐶𝐶𝑗𝑗′𝑅𝑅 are not included in 𝐶𝐶𝑗𝑗𝑅𝑅, these blocks are orphaned to form an orphan branch. In this
situation, if the length of the orphan branch exceeds the threshold 𝜖𝜖, we have the assignments
in which LOBCounter𝑖𝑖 ← LOBCounter𝑖𝑖−1 + 1, and BCHeight𝑖𝑖 ← 𝑗𝑗.

LOBCounter𝑖𝑖 is a field added in the block header of 𝐵𝐵𝑖𝑖𝑆𝑆. It counts the long orphan branches
(LOB) that occurred in the history of ℛ. BCHeight𝑖𝑖 is also a field in 𝐵𝐵𝑖𝑖𝑆𝑆 header. It records the
height of each committed ℛ block chain. The two fields enable an efficient orphan branch
retrieval, which is discussed in the following content.

Commitment verification. Next, the generated 𝐵𝐵𝑖𝑖𝑆𝑆 is broadcast to the other D𝑆𝑆 to reach
consensus. First, a D𝑆𝑆 having received 𝐵𝐵𝑖𝑖𝑆𝑆 will verify that the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 in 𝐵𝐵𝑖𝑖𝑆𝑆 must commit to one of
the ℛ block chains maintained by the D𝑆𝑆 itself, in which the ℛ block chains are received by
the D𝑆𝑆 during the listening process. Second, BCHeight𝑖𝑖 must equal the height of 𝐶𝐶𝑗𝑗𝑅𝑅 , and
LOBCounter𝑖𝑖 must be accumulated by one if a long orphan branch is created.
Subsequently, the 𝒮𝒮 block having correct format and block content will be included into
blockchain 𝒮𝒮. As each 𝒮𝒮 block records an ℛ commitment, 𝒮𝒮 and ℛ are synchronized, which
enables efficient cross-chain verification.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2517

5.4 Protocol: Query

By using the synchronization between 𝒮𝒮 and ℛ, a user using an 𝒮𝒮 client U𝑆𝑆 is able to have
cross-chain verification to ℛ.

First, based on a recent stable 𝒮𝒮 block 𝐵𝐵𝑆𝑆 recording the commitment 𝜋𝜋𝑅𝑅, the user cross-
chain verifies a transaction 𝑇𝑇𝑅𝑅 in an ℛ block 𝐵𝐵𝑅𝑅 by downloading a three-stage Merkle proof,
which is the connection of the Merkle proof of 𝜋𝜋𝑅𝑅 in the Merkle tree of 𝐵𝐵𝑆𝑆, the Merkle proof
of 𝐵𝐵𝑅𝑅 in the Merkle mountain range of 𝜋𝜋𝑅𝑅, and the Merkle proof of 𝑇𝑇𝑅𝑅 in the Merkle tree of
𝐵𝐵𝑅𝑅 . By this design, the transaction in ℛ can be cross-chain verified efficiently without
maintaining the data in ℛ.

Second, by checking where LOBCounter is accumulated in 𝒮𝒮, the user is able to retrieve
any long orphan branches occurred in the history of ℛ. Moreover, BCHeight helps locating
the position of the branches. This retrieval can be achieved by only downloading the block
headers of 𝒮𝒮.

6. Blockchains Synchronization

6.1 Motivation
Discussed in Section 3.1, blockchain is a distributed digital ledger of cryptographically

signed transactions that are grouped into blocks. Each block header records a hash pointer
pointing to the header of the last block, and the transactions is grouped by the Merkle tree in
a block, in which the hash pointer and Merkle tree constitute the cryptographical links among
each part of the blockchain data structure. Therefore, a user using a blockchain light client is
able to have cryptography-based verification to any blocks and transactions in the blockchain.
The advantage of cryptography-based verification is that it is efficient in operation, and it does
not need to trust the intermediaries.

However, as different blockchains are mutually independent in data structure, there are no
cryptographical links between them. This limitation results that we cannot use the same
cryptography-based verification method to achieve cross-chain verification, in which the
cross-chain verification refers that a user using a client of blockchain 𝒮𝒮 wants to verify the
information in blockchain ℛ. For the other methods, some existing schemes have cross-chain
verification with the help of trusted third parties, or each user using a client of 𝒮𝒮 additionally
maintains the data of ℛ to verify both of the blockchains in the same time. However, the
existing methods are insecure or costly.

In respect of the issues above, if we establish the cryptographical links between the two
blockchains by embedding a real-time blockchain commitment of ℛ into every block of 𝒮𝒮, the
application of cryptography-based verification method to cross-chain verification will become
feasible. This conception will have two advantages. First, a user using a client of 𝒮𝒮 will be
able to have cross-chain verification to a transaction in ℛ through the blockchain commitment
𝜋𝜋𝑅𝑅 embedded in 𝒮𝒮, which is as nearly efficient as the verification to a transaction in 𝒮𝒮. Second,
the user does not need to additionally maintain the data of ℛ, avoiding the high usage costs.

6.2 Overview
Starting from the idea mentioned above, we achieve synchronization between 𝒮𝒮 and ℛ by

blockchain commitment, enabling efficient cross-chain verification.
First, the ℛ block chain 𝐶𝐶𝑗𝑗𝑅𝑅 is committed by using Merkle mountain range (MMR), which

is a variant of Merkle tree. In 𝐶𝐶𝑗𝑗𝑅𝑅, the blocks from 𝐵𝐵1𝑅𝑅 to 𝐵𝐵𝑗𝑗𝑅𝑅 is grouped by MMR, and the root

2518 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

of the MMR is the commitment 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 to 𝐶𝐶𝑗𝑗𝑅𝑅. By virtue of MMR, the size of 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 can be as small
as the size of a common transaction.

At the moment when a new 𝒮𝒮 block 𝐵𝐵𝑖𝑖𝑆𝑆 is generated by a D𝑆𝑆, the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is recorded into 𝐵𝐵𝑖𝑖𝑆𝑆.
Subsequently, with 𝑖𝑖 and 𝑗𝑗 increasing, the successively generated 𝐵𝐵𝑖𝑖𝑆𝑆 record the 𝜋𝜋𝑖𝑖𝑅𝑅𝑗𝑗
committing to 𝐶𝐶𝑗𝑗𝑅𝑅 with increasing length, describing the state update of ℛ. By recording the
blockchain commitment, 𝒮𝒮 and ℛ are synchronized.

To encourage the blockchain commitment, we design an incentive mechanism. In this
design, the D𝑆𝑆 committing the 𝐶𝐶𝑗𝑗𝑅𝑅 with larger length will earn more commitment reward. In
order to maximize revenue, the honest majority will be initiative to listen to the most real-time
information of ℛ, and commit the information to 𝒮𝒮, achieving active blockchain commitment.

Through the synchronization between 𝒮𝒮 and ℛ, a user using an 𝒮𝒮 client U𝑆𝑆 is able to have
cross-chain verification to ℛ. The cross-chain verification does not need to rely the trusted
third parties, and the cost to have a cross-chain verification has been nearly close to the cost
to have a verification to the local information in 𝒮𝒮. Therefore, the user is able to have on-
demand cross-chain verification, breaking through the limitation of trust and cost.

6.3 Blockchain Commitment
Because the data in a blockchain occupies a lot of storage space, for example the Bitcoin

blockchain takes up about 340 GB. It is completely impractical to directly commit the
untreated ℛ data into 𝒮𝒮 block. A preprocessing method is to take the hash of every ℛ block.
However, the size of the block hashes is still too large to commit. For example, all block hashes
of Bitcoin blockchain takes up about 21 MB.

Merkle mountain range. To solve the above problem, we first introduce the data structure
of MMR. Considering both the definition of MMR, each 𝒯𝒯𝑘𝑘 in MMR is actually a Merkle tree.
Subsequently, the data 𝐷𝐷𝑗𝑗 can be proved to be included in MMR by a Merkle proof (see
Definition 1), and the complexity of the Merkle proof is 𝑂𝑂(log𝑛𝑛).

Definition 3 (Merkle Mountain Range). Merkle mountain range is formed by a sequence of
perfect binary trees 𝒯𝒯𝑘𝑘 with strictly decreasing heights ℎ𝑘𝑘. In a 𝒯𝒯𝑘𝑘, each leaf of 𝒯𝒯𝑘𝑘 includes a
data hash 𝐻𝐻�𝐷𝐷𝑗𝑗�, and each non-leaf node includes a hash 𝐻𝐻(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑖𝑖𝑖𝑖𝑖𝑖 || 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡𝑡𝑡ℎ𝑖𝑖𝑖𝑖𝑖𝑖). The
number of all leaves in MMR equals ∑2ℎ𝑘𝑘. The hash of the 𝒯𝒯𝑘𝑘 roots is the root of MMR. The
hash function used in MMR is collision resistant.

Compared with Merkle tree, MMR has the advantage of extendibility. When new data
hashes are added as new leaves are appended in MMR, we do not have to recalculate all the
hashes in MMR, but generate the new 𝒯𝒯𝑘𝑘″ roots (𝑘𝑘 < 𝑘𝑘″) based on the old 𝒯𝒯𝑘𝑘 roots along with
the new leaves.

Commitment to ℛ. To make a smaller ℛ commitment to be recorded into 𝒮𝒮 block, we
further aggregate the hashes of the ℛ blocks by using MMR (see Fig. 5).
For a chosen ℛ block chain 𝐶𝐶𝑗𝑗𝑅𝑅 with the largest length, the hashes of the blocks in 𝐶𝐶𝑗𝑗𝑅𝑅 from 𝐵𝐵1𝑅𝑅
to 𝐵𝐵𝑗𝑗𝑅𝑅 are sequentially included into the leaves of a MMR, and the MMR root is included in
the commitment 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 , in which 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 has the size comparable to the size of a common transaction.
Now 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is small enough to be recorded into 𝐵𝐵𝑖𝑖𝑆𝑆.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2519

B1 B2 B3 B4 B5 B6 B7 B8

H11 H12H9H8H5H4H2H1

H3 H6 H10 H13

H7 H14

H15

B9 B10 B11

H16 H17 H19

H18

Hr

B12 B13

H20 H23

H21

H22

Hr''

Fig. 5. Merkle Mountain Range. The blocks from 𝐵𝐵1 to 𝐵𝐵11 in a block chain are aggregated by the

MMR (marked by full line). For convenience, we draw only 11 blocks here. The binary trees with the
roots 𝐻𝐻15, 𝐻𝐻18, and 𝐻𝐻19 are three Merkle trees, and the hash 𝐻𝐻𝑟𝑟 = 𝐻𝐻(𝐻𝐻15 || 𝐻𝐻18 || 𝐻𝐻19) is the root of
the MMR. When new blocks 𝐵𝐵12 and 𝐵𝐵13 (marked by dotted line) are added into the block chain, the

new hashes 𝐻𝐻20, 𝐻𝐻21, 𝐻𝐻22, 𝐻𝐻23, and 𝐻𝐻𝑟𝑟″ are generated based on 𝐻𝐻15, 𝐻𝐻18, and 𝐻𝐻19, and 𝐻𝐻𝑟𝑟″ is the root
of the new MMR.

6.4 Synchronization via Blockchain Commitment
Discussed in Section 5, at the moment when a new block 𝐵𝐵𝑖𝑖𝑆𝑆 is assembled by a dual-

functional node D𝑆𝑆, the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 committed by the D𝑆𝑆 is recorded into 𝐵𝐵𝑖𝑖𝑆𝑆. After finding a nonce to
make the 𝐵𝐵𝑖𝑖𝑆𝑆 satisfy the difficulty, the D𝑆𝑆 broadcasts the 𝐵𝐵𝑖𝑖𝑆𝑆 to other D𝑆𝑆 to reach consensus.

Commitment verification. In the process of consensus, an honest D𝑆𝑆 having received the
𝐵𝐵𝑖𝑖𝑆𝑆 is required to have verification to the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 in it. A valid 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 satisfies the following two
conditions:
• Congruity: 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 commits to an ℛ block chain maintained by the honest D𝑆𝑆 itself.
• Monotonicity: the length of 𝐶𝐶𝑗𝑗𝑅𝑅 is greater than or equal to the length of 𝐶𝐶𝑗𝑗′𝑅𝑅 committed by

the 𝜋𝜋(𝑖𝑖−1)𝑗𝑗′
𝑅𝑅 in 𝐵𝐵𝑖𝑖−1𝑆𝑆 .

For the congruity, if 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 does not commit to any block chains maintained by the honest D𝑆𝑆,
the D𝑆𝑆 affirms that the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is not true, and the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 will not generated new 𝒮𝒮 block following
𝐵𝐵𝑖𝑖𝑆𝑆. It is worth noted if a block chain 𝐶𝐶𝑗𝑗𝑅𝑅 committed by 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is orphaned in a future time, the
𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is still true. Because the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 reflects the state of ℛ in a certain time period. This
commitment enables us to locate the long orphan branches occurred in ℛ.

For the monotonicity, as the blockchain ℛ increases with new block extended, the D𝑆𝑆
should follow the increment to commit the ℛ block chain with increasing length. Otherwise,
the behavior committing the out-of-date block chains with decreasing length violate our
intention to deliver the real-time information from ℛ to 𝒮𝒮.

Synchronization between 𝒮𝒮 and ℛ . The 𝐵𝐵𝑖𝑖𝑆𝑆 satisfying the condition of congruity and
monotonicity will reach consensus among the honest majority, and be included into 𝒮𝒮. As a
result, the blockchain 𝒮𝒮 and ℛ are synchronized to form an integrated three-layer data
structure (see Fig. 6): the first layer is 𝒮𝒮, whose block records 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 ; the second layer is 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 ,
which commits to ℛ by using MMR; the third layer is ℛ, which records its own transactions.
The synchronization between 𝒮𝒮 and ℛ enables the cross-chain transaction through a three-
stage Merkle proof, which is discussed in Section 6.6.

2520 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

H11 H12H9H8H5H4H2H1

H3 H6 H10 H13

H7 H14

H15

H16 H17 H19

H18

T1 T2 T3 T4

H5H4H2H1

H3 H6 R R

 R

 R R R R

 R R R

πi,11 R

B
lockchain S

M
M

R
B

lockchain R

Bh1 Bh2 Bh3 Bh4 Bh5 Bh6 Bh7 Bh8 Bh9 Bh10 Bh11

Bhi-2 Bhi-1 Bhi Bhi+1 Bhi+2

 R R R R R R R R R R R

 S S S S S

T1 T2 T3

H4H2H1

H3 H6 S

 S

 S

 S

 S

 S S

 S H5 S

Fig. 6. Synchronization between 𝒮𝒮 and ℛ. 𝒮𝒮 and ℛ are synchronized to form a three-layer data

structure, which includes the blockchain 𝒮𝒮, MMR, and blockchain ℛ. For convenience, we draw only
the block headers of 𝒮𝒮 and ℛ with necessary block contents. Based on a stable 𝒮𝒮 block such as 𝐵𝐵𝑖𝑖𝑆𝑆
with the block header 𝐵𝐵ℎ𝑖𝑖𝑆𝑆, a user cross-chain verifies a given transaction such as 𝑇𝑇3𝑅𝑅 by the three-

stage Merkle proof (marked by dark blue). First, the validity of 𝜋𝜋𝑖𝑖,11𝑅𝑅 is proved, when the Merkle tree

root in 𝐵𝐵ℎ𝑖𝑖𝑆𝑆 equals 𝐻𝐻 �𝐻𝐻3𝑆𝑆 || 𝐻𝐻 �𝐻𝐻4𝑆𝑆 || 𝐻𝐻�𝜋𝜋𝑖𝑖,11𝑅𝑅 ���. Second, the validity of 𝐵𝐵ℎ7𝑅𝑅 is proved, when the

MMR root in 𝜋𝜋𝑖𝑖,11𝑅𝑅 equals 𝐻𝐻 �𝐻𝐻 �𝐻𝐻7 || 𝐻𝐻�𝐻𝐻10 || 𝐻𝐻(𝐻𝐻(𝐵𝐵ℎ7𝑅𝑅) || 𝐻𝐻12)�� || 𝐻𝐻18 || 𝐻𝐻19�. Third, the
validity of 𝑇𝑇3𝑅𝑅 is proved, when the Merkle tree root in 𝐵𝐵ℎ7𝑅𝑅 equals 𝐻𝐻�𝐻𝐻3𝑅𝑅 || 𝐻𝐻(𝐻𝐻(𝑇𝑇3𝑅𝑅) || 𝐻𝐻5𝑅𝑅)�.

Treatment to orphan branch. Because of the network latency or intentional attack

(discussed in Section 3.3), the ℛ block chain 𝐶𝐶𝑗𝑗𝑅𝑅 committed by 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 has the possibility to be
orphaned in a future time. Specifically, the honest miners of ℛ adapt and mine on another ℛ
block chain with the largest length, and 𝐶𝐶𝑗𝑗𝑅𝑅 stops to increase leaving an orphan branch at the
tail end of 𝐶𝐶𝑗𝑗𝑅𝑅.

In this situation, the honest majority of D𝑆𝑆 will detect this orphaning event, and preserve
𝐶𝐶𝑗𝑗𝑅𝑅 along with its orphan branch. The 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 committing to 𝐶𝐶𝑗𝑗𝑅𝑅 still satisfies the condition of
congruity, although 𝐶𝐶𝑗𝑗𝑅𝑅 has been orphaned. The commitment to orphan branch is not trivial,
as it reflects the state of ℛ in different time period.

More importantly, when the length of an orphan branch has exceeded a threshold 𝜖𝜖, the
probability that the long orphan branch is caused by network latency drops to nearly zero,
which means that the long orphan branch is very likely to be caused by intentional attack.
Hence, the commitment to long orphan branch reflects the malicious behaviors in ℛ. Moreover,
the LOBCounter𝑖𝑖 counting the long orphan branches will provide marks for users to locate the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2521

drastic structure changes caused by intentional attacks.

6.5 Incentive for Blockchain Commitment
The work to commit the ℛ block chain brings additional workload without retribution.

Although the condition of monotonicity has regulated that a D𝑆𝑆 is not allowed to commit the
out-of-date ℛ block chains with decreasing length, the commitment to the up-to-date ℛ block
chains with larger length is not encouraged by the regulation. It results that the D𝑆𝑆 will be
passive to do the commitment, and the latest information in ℛ cannot be committed in real
time.

To achieve active blockchain commitment, we propose the “commitment reward” to
incentive the commitment, which is inspired by the incentive mechanism in Bitcoin. In Bitcoin,
there are two types of rewards, which are the block reward and transaction fee. For the block
reward, a bookkeeper who generates a new block will receive 6.25 Bitcoin, in which 6.25
Bitcoins is created out of nothing by a coin-creation transaction in the new block. For the
transaction fee, a user who publishes a transaction will attach a transaction fee on it, rewarding
a bookkeeper to timely record the transaction into the new block.

Commitment reward. As the third type of reward, the commitment reward is created out
of nothing by a coin-creation transaction 𝑇𝑇𝑐𝑐𝑆𝑆, which has the same creation process as the block
reward in Bitcoin. The 𝑇𝑇𝑐𝑐𝑆𝑆 is recorded into 𝐵𝐵𝑖𝑖𝑆𝑆 along with the other transactions in 𝐵𝐵𝑖𝑖𝑆𝑆, and the
reward is sent to a recipient address chosen by the D𝑆𝑆 who generates the 𝐵𝐵𝑖𝑖𝑆𝑆.

The value of commitment reward monotonically increases with the proof-of-work in the
fresh blocks committed by 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 . To get more commitment reward, a D𝑆𝑆 should actively obtain
the new fresh blocks mined in the longest chain of ℛ, and timely commit the fresh blocks
before other D𝑆𝑆 do. Subsequently, D𝑆𝑆 is incentivized to commit the real-time information of
ℛ to 𝒮𝒮.

Definition 4 (Fresh block). Fresh blocks are the newly generated ℛ blocks which are
committed by 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 , but were not committed by any 𝜋𝜋𝑖𝑖′𝑗𝑗′𝑅𝑅 before 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 (𝑖𝑖′ < 𝑖𝑖, 𝑗𝑗′ ≤ 𝑗𝑗).

Backoff against network latency. However, the behavior that D𝑆𝑆 try to commit the latest
ℛ block brings additional problem in the consensus process of 𝐵𝐵𝑖𝑖𝑆𝑆. Because of the network
latency, the transmission of the ℛ block takes time, in which we assume that the honest
majority of D𝑆𝑆 will reach consensus to the newly generated block of 𝒮𝒮 and ℛ within the
maximum time delay 𝛥𝛥𝑆𝑆 and 𝛥𝛥𝑅𝑅. There is a phenomenon that the 𝐵𝐵𝑖𝑖𝑆𝑆 with 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 committing to
the 𝐵𝐵𝑗𝑗𝑅𝑅 has been spread throughout the network, but 𝐵𝐵𝑗𝑗𝑅𝑅 has not been received by the honest
majority of D𝑆𝑆. This phenomenon is more common when the 𝒮𝒮 block propagation speed is
higher than the propagation speed of ℛ block, or in another word 𝛥𝛥𝑆𝑆 < 𝛥𝛥𝑅𝑅.

Consequently, there can be a time interspace in which the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 in 𝐵𝐵𝑖𝑖𝑆𝑆 is not congruent with
any ℛ block chains maintained by the honest majority, as most of the honest D𝑆𝑆 have not
received 𝐵𝐵𝑗𝑗𝑅𝑅. The honest D𝑆𝑆 will affirm that 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 does not satisfy the condition of congruity,
and chooses not to generate new 𝒮𝒮 block following 𝐵𝐵𝑖𝑖𝑆𝑆. This affirmation keeps until 𝐵𝐵𝑗𝑗𝑅𝑅 has
reached consensus. In this time interspace, 𝐵𝐵𝑖𝑖𝑆𝑆 takes the risk to be orphaned.

To lower the risk, A D𝑆𝑆 who generates the 𝒮𝒮 block will have backoff against network
latency. The D𝑆𝑆 does not directly commit to the latest ℛ block after first receiving it. Instead,
the D𝑆𝑆 waits for a certain time, and let the ℛ block reach consensus among the majority of D𝑆𝑆.

2522 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

Then the D𝑆𝑆 commits the latest ℛ block.

6.6 Cross-chain Verification via Synchronization
As the blockchains 𝒮𝒮 and ℛ have been synchronized via the blockchain commitment, a user

using an 𝒮𝒮 client U𝑆𝑆 is able to have cross-chain verification via the synchronization. The
cross-chain verification includes two aspects, which are cross-chain transaction verification
and long orphan branch supervision.

Cross-chain transaction verification. First, the user chooses a recent stable 𝐵𝐵𝑖𝑖𝑆𝑆 with large
enough confirmation. A valid 𝐵𝐵𝑖𝑖𝑆𝑆 header satisfies that every 𝐵𝐵𝑖𝑖′𝑆𝑆 prior to 𝐵𝐵𝑖𝑖𝑆𝑆 (𝑖𝑖′ < 𝑖𝑖) is
correctly pointed by the hash pointer in 𝐵𝐵𝑖𝑖′+1𝑆𝑆 , which ensures no manipulation occurs. Based
on the 𝐵𝐵𝑖𝑖𝑆𝑆 header, the user further verifies a transaction 𝑇𝑇𝑅𝑅 in ℛ through a three-stage Merkle
proof across 𝒮𝒮 and ℛ (see Fig. 6).
• The first stage Merkle proof is the hash path linking the 𝐵𝐵𝑖𝑖𝑆𝑆 header to the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 in 𝐵𝐵𝑖𝑖𝑆𝑆. The

Merkle proof in this stage is situated in the Merkle tree in 𝐵𝐵𝑖𝑖𝑆𝑆, as the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 is recorded along
with other transactions in 𝐵𝐵𝑖𝑖𝑆𝑆.

• The second stage Merkle proof is the hash path linking the 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 to the header of the ℛ
block 𝐵𝐵𝑗𝑗𝑅𝑅. The Merkle proof in this stage is situated in the MMR.

• The third stage Merkle proof is the hash path linking the 𝐵𝐵𝑗𝑗𝑅𝑅 header to the target
transaction 𝑇𝑇𝑅𝑅 in 𝐵𝐵𝑗𝑗𝑅𝑅. The Merkle proof in this stage is situated in the Merkle tree in 𝐵𝐵𝑗𝑗𝑅𝑅.

The 𝑇𝑇𝑅𝑅 is verified by doing hash calculations backward along the three-stage Merkle proof,
which is from 𝑇𝑇𝑅𝑅 to 𝐵𝐵𝑗𝑗𝑅𝑅 header, to 𝜋𝜋𝑖𝑖𝑅𝑅, and to 𝐵𝐵𝑖𝑖𝑆𝑆 header. The 𝑇𝑇𝑅𝑅 is valid when the result of
the hash calculations matches the Merkle root in 𝐵𝐵𝑖𝑖𝑆𝑆 header.

Long orphan branch supervision. In the second aspect, the user using the U𝑆𝑆 has
supervision to the long orphan branches in ℛ by checking the LOBCounter𝑖𝑖 in 𝐵𝐵𝑖𝑖𝑆𝑆 . An
accumulation of LOBCounter𝑖𝑖 indicates that a long orphan branch whose length has exceeded
the threshold 𝜖𝜖 is created in ℛ, which reflects that an intentional attack occurs in ℛ with large
possibility. Subsequently, based on all the 𝐵𝐵𝑖𝑖𝑆𝑆 with the LOBCounter𝑖𝑖 accumulated, a user is
able to locate the long orphan branches occurred in ℛ to trace the malicious behaviors in the
history of ℛ.

Simplified re-verification. A combination of the cross-chain transaction verification and
long orphan branch supervision can further simplify the re-verification to the transactions in
ℛ.

There is a common scenario that a business proceeded in 𝒮𝒮 is related to a 𝑇𝑇𝑅𝑅 in ℛ, and the
prerequisite of every operation in the business is that the 𝑇𝑇𝑅𝑅 must stably exist in ℛ. However,
as each block in ℛ has the possibility to be orphaned in a future time, the 𝑇𝑇𝑅𝑅 recorded in an ℛ
block may be removed later. Therefore, to guarantee the validity of every operation in the
business, the business participants have to re-verify the 𝑇𝑇𝑅𝑅 every time in each operation,
ensuring that the 𝑇𝑇𝑅𝑅 exists in ℛ.

We assume that a business participant first verifies the 𝑇𝑇𝑅𝑅 based on the header of 𝐵𝐵𝑖𝑖𝑆𝑆, and
the current latest stable block of 𝒮𝒮 is 𝐵𝐵𝑖𝑖″𝑆𝑆 (𝑖𝑖 < 𝑖𝑖″). By virtue of the long orphan branch
supervision, the multiple re-verifications to the 𝑇𝑇𝑅𝑅 can be omitted if 𝑇𝑇𝑅𝑅 satisfies the following
two conditions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2523

• First, the value BCHeight𝑖𝑖″−1 − BCHeight𝑖𝑖 has exceeded threshold 𝜖𝜖.
• Second, the LOBCounter𝑖𝑖″ in 𝐵𝐵𝑖𝑖″𝑆𝑆 does not accumulated compared with the

LOBCounter𝑖𝑖 in 𝐵𝐵𝑖𝑖𝑆𝑆.
The two condition means that the confirmation of 𝐵𝐵𝑗𝑗𝑅𝑅 recording the 𝑇𝑇𝑅𝑅 is at least larger than
𝜖𝜖, and no orphan branch with large enough length occurred to remove 𝐵𝐵𝑗𝑗𝑅𝑅. Therefore, the 𝑇𝑇𝑅𝑅
has been showed to exist in ℛ, and the re-verification to the 𝑇𝑇𝑅𝑅 is not necessary.

7. Analysis

7.1 Security Analysis

Illegal blockchain commitment. While generating the commitment to ℛ, a dishonest D𝑆𝑆
may tamper the block hash of ℛ, create fabricated hash pretending to be the hash of the new
ℛ block, or just arbitrarily commit a random value to create a false commitment. It results that
none of the ℛ block chains correspond with the commitment, which violates the condition of
congruity. Second, a dishonest D𝑆𝑆 may record an out-of-date commitment 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅 committing to
an ℛ block chain with smaller length compared with the ℛ block chain committed by 𝜋𝜋(𝑖𝑖−1)𝑗𝑗″

𝑅𝑅
(𝑗𝑗 < 𝑗𝑗″), which violates the condition of monotonicity. We assume that the honest majority of
D𝑆𝑆 will reach consensus to an ℛ block within the time delay 𝛥𝛥𝑅𝑅. Subsequently, the honest
majority are able to verify the false and out-of-date commitment based on the received
information of ℛ, and the 𝒮𝒮 block recording the illegal commitment will not be included into
ℛ.

Counterfeit three-stage Merkle proof. First, we review the security of Merkle proof. For
a given Merkle tree 𝒯𝒯, 𝒯𝒯 is constructed by collision-resistant hash function. The root of 𝒯𝒯 is
𝑟𝑟𝒯𝒯, every node in 𝒯𝒯 has a path to 𝑟𝑟𝒯𝒯, and every Merkle proof must end with 𝑟𝑟𝒯𝒯. Assume a
PPT adversary is able to forge a Merkle proof 𝛱𝛱𝐷𝐷𝒯𝒯 for a 𝐷𝐷 not in 𝒯𝒯. It is required that the
adversary establishes a new path linking 𝐷𝐷 with a node 𝐻𝐻(𝑥𝑥 || 𝑦𝑦) in 𝒯𝒯 which has an initial
path to 𝑟𝑟𝒯𝒯 , and finds an 𝑥𝑥′ (or 𝑦𝑦′) to satisfy 𝐻𝐻(𝑥𝑥′ || 𝑦𝑦) = 𝐻𝐻(𝑥𝑥 || 𝑦𝑦) and 𝑥𝑥′ || 𝑦𝑦 ≠ 𝑥𝑥 || 𝑦𝑦 (or
𝐻𝐻(𝑥𝑥 || 𝑦𝑦′) = 𝐻𝐻(𝑥𝑥 || 𝑦𝑦) and 𝑥𝑥 || 𝑦𝑦′ ≠ 𝑥𝑥 || 𝑦𝑦), in which a collision occurs.

Furthermore, the three-stage Merkle proof is constituted by three Merkle proofs with
coherent path in three Merkle trees. The path links the transaction 𝑇𝑇𝑅𝑅 to the block header of
𝒮𝒮, traversing across ℛ block, MMR, and 𝒮𝒮 block. Given a stable 𝒮𝒮 block header which has
been confirmed valid, an adversary forging a three-stage Merkle proof for a transaction 𝑇𝑇 not
in ℛ is required to establishes a new path linking 𝑇𝑇 to a node in any one of the three Merkle
trees. However, it is hard to find a collision in any node.

Denial-of-service attack. An adversary may try to control the D𝑆𝑆 to suspend or delay the
commitment to ℛ . However, the decentralized design of Surveillant makes the denial-of-
service attack difficult. To permanently exclude the 𝒮𝒮 block recording the commitment, the
adversary has to have a majority attack. It creates the adversary’s 𝒮𝒮 chain without recording
the ℛ commitment, and the chain has overwhelming advantage in length to exclude the other
block chains generated by the honest majority. To delay the commitment to real-time
information of ℛ, the adversary has to have bifurcation in 𝒮𝒮 to orphan the 𝒮𝒮 blocks with large
enough confirmation. However, the condition for the above attacks is that the corrupted hash
power in D𝑆𝑆 should have exceeded the security threshold, which violates our initial
assumption.

2524 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

7.2 Time Consumption of Blockchain Commitment
The time consumption is calculated from the generation of 𝐵𝐵𝑗𝑗𝑅𝑅 to the moment when 𝜋𝜋𝑖𝑖𝑖𝑖𝑅𝑅

committing to 𝐶𝐶𝑗𝑗𝑅𝑅 is recorded into the newly generated 𝐵𝐵𝑖𝑖𝑆𝑆 . First, we assume that 𝐵𝐵𝑗𝑗𝑅𝑅 is
broadcast in network following the block propagation model 𝑃𝑃(𝑡𝑡) [19], in which the
proportion of the honest majority that have received the 𝐵𝐵𝑗𝑗𝑅𝑅 increases with time 𝑡𝑡 following
the model 𝑃𝑃(𝑡𝑡). In the condition without backoff, the D𝑆𝑆 having received 𝐵𝐵𝑗𝑗𝑅𝑅 begin to generate
𝐵𝐵𝑖𝑖𝑆𝑆 immediately. The total hash rate of all D𝑆𝑆 is ℎ, 𝐻𝐻‾ is the average number of hashes required
to generate an 𝒮𝒮 block, and 𝛥𝛥𝛥𝛥 is the time it takes. Their relationship satisfies the following
equation. Considering the backoff time 𝛥𝛥𝑡𝑡𝑏𝑏 taken by D𝑆𝑆, the average time consumption of
blockchain commitment equals 𝛥𝛥𝛥𝛥 + 𝛥𝛥𝑡𝑡𝑏𝑏.

ℎ� 𝑃𝑃
𝛥𝛥𝛥𝛥

0
(𝑡𝑡),𝑑𝑑𝑑𝑑 = 𝐻𝐻‾

7.3 Storage and Bandwidth Overhead

In addition to the function to receive, maintain and generate the blocks of ℛ, D𝑆𝑆 is required
to receive and maintain the full blockchain data of ℛ, which brings additional overhead to
storage and bandwidth. However, compared with the mining process in 𝒮𝒮 that consumes most
of the resource of D𝑆𝑆, the additional overhead appears to be insignificant.

On the other hand, a user using a light client U𝑆𝑆 downloads the three-stage Merkle proof to
have cross-chain verification to a transaction in ℛ. Because the complexity of Merkle proof
increases logarithmically, and the user does not need to download or maintain the data on ℛ.
The cross-chain verification to a transaction in ℛ can be as nearly efficient as the verification
to a local transaction in 𝒮𝒮.

8. Implementation and Evaluation

8.1 Implementation
We implement a simulation experiment for Surveillant. The main processes of Surveillant

are written in Python (version 3.8.3) Javascript(node.js), and HTML. The blockchain ℛ is
deployed on Intel Xeon E5-2680 v4 CPU @2.4GHz, 32GB DDR, and Ubuntu 18.04 64bit
operating system. 100,000 dual-functional nodes of 𝒮𝒮 are deployed on Intel Xeon E5-2680 v4
CPU @2.4GHz, 32GB DDR, and Ubuntu 18.10 64bit operating system. The clients of 𝒮𝒮 are
deployed on Intel Core i7-7500U @2.70GHz, and Windows 10.0.19042 64bit operation
system.

8.2 Result Analysis
First, for blockchain ℛ and 𝒮𝒮 , we investigate how long it takes for an ℛ block to be

committed to 𝒮𝒮. On the side of ℛ, the propagation of ℛ block is improvable, as the application
of delegations or gossip protocol will accelerate the speed. The block propagation time is
defined as the time required for a newly generated ℛ block to reach consensus among the
honest majority. On the side of 𝒮𝒮, the block generation rate is adjustable following different
difficulty policies or consensus epoch setting. The time it takes for committing is calculated
from the moment when an ℛ block is generated to the moment when an 𝒮𝒮 block which records
the commitment committing to the ℛ block is generated. Measurements are given as the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2525

average over 1000 test runs, and the results are presented in Fig. 7. From the results, we can
find that the time consumption of blockchain commitment is mainly affected by block
generation rate (BGenRate). The block propagation time has slight influence on the time
consumption, as the block propagation time is relatively smaller compared with the block
generating time.

Fig. 7. Time consumption of blockchain commitment Fig. 8. Size of proves

Second, we have a comparison about the user’s storage overhead in Chain relay, XCLAIM,

and Surveillant. The characteristics of blockchain 𝒮𝒮 and ℛ are configured referring to the
specifications of Ethereum [27] and Bitcoin [28]. The trusted checkpoint is built into the code
of the 𝒮𝒮 client as Ethereum design, by which a user using a light client of 𝒮𝒮 only need to
download the latest headers of 𝒮𝒮. We measured the size of total data stored by the user, as
shown in Table 2. Compared with Chain relay and XCLAIM that maintain both the block
headers of 𝒮𝒮 and ℛ, the client of Surveillant is smaller than the clients of the other two schemes,
as Surveillant does not need to store the block headers of ℛ.

Table 2. Storage overhead
 Chain relay XCLAIM Surveillant

Client size (MB) 165 179 104

Third, we compare the bandwidth overhead of Chain relay, XCLAIM, and Surveillant. It is
measured by the the average data size which a user needs to download for a cross-chain
transaction verification. In 𝒮𝒮 and ℛ, the size of a block is limited to 2 MB, and the hash
function applied is SHA-256. Measurements are given as the average over 1000 test runs, and
the results are presented in Table 3. In Surveillant, because the user does not download the
block headers of ℛ, but has cross-chain transaction verification through the three-stage Merkle
proof (TSMP), the amount of data downloads is significantly reduced. Furthermore, we
compare the size of TSMP with the size of ordinary Merkle proof to verify a local transaction
in 𝒮𝒮, as shown in Fig. 8. As the height of Merkle mountain range increases logarithmically
with the number of the blocks included in it, the TSMP size is kept at about 1.5KB, which is
as negligible as the size of ordinary Merkle proof. Comprehensively, the results in Table 3
and Fig. 8 show that the cross-chain transaction verification in Surveillant is as nearly efficient
as the verification to a local transaction.

0

20

40

60

80

1 2 4 8 16

Ti
m

e
(s

)

Block propagation time (s)

BGenRate=10s / block
BGenRate=20s / block
BGenRate=30s / block

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6
Pr

oo
f s

iz
e

(K
B

)
The height of verified block (×105)

Merkle Proof Three-stage MP

2526 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

Table 3. Bandwidth overhead

 Chain relay XCLAIM Surveillant

Data downloaded (MB) 12.1 12.3 1.7

8. Conclusion
To achieve blockchain interoperability, we propose a supervision mechanism between

blockchains (Surveillant) in this paper. It introduces the dual-functional nodes to commit the
real-time information from ℛ to 𝒮𝒮 , which enables users to have efficient cross-chain
verification. Specially, we introduce Merkle mountain range for blocks aggregation to deal
with the large-scale data in ℛ. We propose the design of LOBCounter, which enables the users
of 𝒮𝒮 to retrieve the long orphan branch occurred in ℛ. The incentive mechanism is improved
to encourage the behaviors of dual-functional nodes. The security proof and experimental
results show that Surveillant is suitable in practice.

References
[1] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure proof-of-stake

blockchain protocol,” in Proc. of Annual International Cryptology Conference, Springer, pp. 357–
388, 2017. Article (CrossRef Link)

[2] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash:
Decentralized anonymous payments from bitcoin,” in Proc. of 2014 IEEE Symposium on Security
and Privacy, IEEE, pp. 459–474, 2014. Article (CrossRef Link)

[3] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant payments,” 2016.
Article (CrossRef Link)

[4] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena, “A secure sharding protocol
for open blockchains,” in Proc. of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 17–30, 2016. Article (CrossRef Link)

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p.
21260, 2008. Article (CrossRef Link)

[6] V. Buterin et al., “A next-generation smart contract and decentralized application platform,” white
paper, vol. 3, no. 37, 2014. Article (CrossRef Link)

[7] S. Jiang, J. Cao, J. A. McCann, Y. Yang, Y. Liu, X. Wang, Y. Deng, “Privacy-Preserving and
Efficient Multi-Keyword Search over Encrypted Data on Blockchain,” in Proc. of IEEE
International Conference on Blockchain, IEEE, pp. 405-410, 2019. Article (CrossRef Link)

[8] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y.-C. Hu, “Hyperservice:
Interoperability and programmability across heterogeneous blockchains,” in Proc. of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pp. 549–566, 2019.
Article (CrossRef Link)

[9] V. Buterin, “Chain interoperability,” R3 Research Paper, 2016. Article (CrossRef Link)
[10] W. Warren, A. Bandeali, “0x: An open protocol for decentralized exchange on the ethereum

blockchain,” 2017. Article (CrossRef Link)
[11] C. Decker and R. Wattenhofer, “A fast and scalable payment network with bitcoin duplex

micropayment channels,” in Proc. of Symposium on Self-Stabilizing Systems, Springer, pp. 3–18,
2015. Article (CrossRef Link)

[12] M. Herlihy, “Atomic cross-chain swaps,” in Proc. of the 2018 ACM symposium on principles of
distributed computing, pp. 245–254, 2018. Article (CrossRef Link)

[13] “Btc relay,” Ethereum project, 2015. [Online]. Available: https://github.com/ethereum/btcrelay

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 8, August 2022 2527

[14] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knottenbelt, “Xclaim: Trustless,
interoperable, cryptocurrency-backed assets,” in Proc. of 2019 IEEE Symposium on Security and
Privacy (SP), IEEE, pp. 193–210, 2019. Article (CrossRef Link)

[15] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, J. He, “BlocHIE: A BLOCkchain-Based Platform for
Healthcare Information Exchange,” in Proc. of International Conference on Smart Computing,
IEEE, pp. 49-56, 2018. Article (CrossRef Link)

[16] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. A. Maglaras, H. Janicke, “Blockchain
Technologies for the Internet of Things: Research Issues and Challenges,” IEEE Internet of Things
Journal, vol. 6, pp. 2188-2204, 2019. Article (CrossRef Link)

[17] M. A. Ferrag, L. Shu, “The Performance Evaluation of Blockchain-Based Security and Privacy
Systems for the Internet of Things: A Tutorial,” IEEE Internet of Things Journal, vol. 8, pp. 17236-
17260, 2021. Article (CrossRef Link)

[18] S. Jiang, J. Cao, H. Wu, Y. Yang, “Fairness-Based Packing of Industrial IoT Data in Permissioned
Blockchains,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7639-7649, 2021.
Article (CrossRef Link)

[19] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin network,” in Proc. of IEEE
P2P 2013 Proceedings, IEEE, pp. 1–10, 2013. Article (CrossRef Link)

[20] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas, “Stochastic models and wide-area
network measurements for blockchain design and analysis,” in Proc. of IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, IEEE, pp. 2546–2554, 2018.
Article (CrossRef Link)

[21] L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze blockchain consistency,” in
Proc. of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 729–
744, 2018. Article (CrossRef Link)

[22] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Proc. of
International conference on financial cryptography and data security, Springer, pp. 436–454, 2014.
Article (CrossRef Link)

[23] J. Bonneau, “Why buy when you can rent?,” in Proc. of International Conference on Financial
Cryptography and Data Security, Springer, pp. 19–26, 2016. Article (CrossRef Link)

[24] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and
applications,” in Proc. of Annual international conference on the theory and applications of
cryptographic techniques, Springer, pp. 281–310, 2015. Article (CrossRef Link)

[25] L. Wang and Y. Liu, “Exploring miner evolution in bitcoin network,” in Proc. of International
Conference on Passive and Active Network Measurement, Springer, pp. 290–302, 2015.
Article (CrossRef Link)

[26] P. Todd, “Merkle mountain range,” Github, 2018. [Online]. Available:
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-
range.md

[27] G. Wood et al., “Ethereum: A secure decentralised generalized transaction ledger,” Ethereum
project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014. Article (CrossRef Link)

[28] “Bitcoin development,” Github, 2021. [Online]. Available: https://github.com/bitcoin/bitcoin

2528 Liang et al.: Surveillant: a supervision mechanism between
blockchains for efficient cross-chain verification

Xinyu Liang received the master's degree in Computer Science from Central China Normal
University in 2018. He is currently working toward the Ph.D. degree in information security,
Wuhan University, Wuhan. His research interests include blockchain and computer network.

Jing Chen received the Ph.D. degree in computer science from Huazhong University of
Science and Technology, Wuhan. He worked as a full professor in Wuhan University from
2015. His research interests in computer science are in the areas of network security, cloud
security. He has published more than 100 research papers in many international journals and
conferences, such as TDSC, TIFS, TMC, INFOCOM, TC, TPDS, et al. He acts as a reviewer
for many journals and conferences, such as IEEE Transactions on Information Forensics,
IEEE Transactions on Computers, IEEE/ACM Transactions on Networking.

Ruiying Du received the BS, MS, PH. D degrees in computer science in 1987, 1994 and
2008, from Wuhan University, Wuhan, China. She is a professor at School of Cyber Science
and Engineering, Wuhan University. Her research interests include network security, wireless
network, cloud computing and mobile computing. She has published more than 80 research
papers in many international journals and conferences, such as IEEE Transactions on Parallel
and Distributed System, International Journal of Parallel and Distributed System, INFOCOM,
SECON, TrustCom, NSS.

Tianrui Zhao is currently working toward the bachelor degree in information security,
Wuhan University, Wuhan, China. His research interests include cryptography and
blockchain.

