DOI QR코드

DOI QR Code

<복식문화연구>의 지적구조와 연구동향 - 계량정보학적 양적 접근과 의미연결망의 질적 접근 -

Intellectual structure and research trends of The Research Journal of the Costume Culture - Bibliometric quantitative and qualitative semantic network approaches -

  • 최영현 (서울과학기술대학교 경영학과) ;
  • 최미화 (계명대학교 패션마케팅학전공)
  • Choi, Yeong-Hyeon (Dept. of Business Administration, Seoul National University of Science and Technology) ;
  • Choi, Mi-Hwa (Dept. of Fashion Marketing, Keimyung University)
  • 투고 : 2022.07.27
  • 심사 : 2022.08.19
  • 발행 : 2022.08.31

초록

The purpose of this study is to examine the relationships between citations and the research trends of The Research Journal of the Costume Culture (RJCC) using bibliometric and network analyses. The results are as follows. First, the RJCC has been cited by a greater number of journals and high-reputation journals today. The RJCC has been mentioned in global academic journals in various fields, and it has been noted the most in environmental science. Second, because of examining the articles published in the RJCC over the past three years (2019 - 2021), it was found that the number of topics was evenly distributed in various subfields of the clothing and textiles sector. The RJCC principally deals with traditional clothing, ethics and sustainability, and technology, which means that the RJCC reflects the past, present, and future. As a result of conducting a cluster analysis using the Wakita-Tsurumi algorithm, the subjects of ethical fashion and sustainability were derived from the subdivisions of the RJCC. This suggests that the RJCC is a journal specialized in ethical fashion and sustainability sectors such as environmental, animal, and labor ethics. This study outlined the current status and future direction of academic journals in the field of clothing through an analysis of the RJCC's influence change and the relationship between citations. In addition, it is academically significant because it identifies research trends and knowledge-structure changes in the apparel science field by identifying changes in research keywords and significant research topics by sector.

키워드

참고문헌

  1. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403-412. doi:10.1016/j.joi.2012.01.002
  2. Ahn, S.-k. (2020a). Measuring 'consumer smartness' for the fashion consumption environment. The Research Journal of the Costume Culture, 28(1), 45-61. doi:0.29049/rjcc.2020.28.1.45 https://doi.org/10.29049/rjcc.2020.28.1.45
  3. Ahn, S.-k. (2020b). Smart consumers: A new segment for sustainable digital retailing in Korea. Sustainability, 12(18), 7682. doi:10.3390/su12187682
  4. Arumsari, A., Sachari, A., & Kusmara, A. R. (2019). The influence of traditional values on the development of fashion in Bali. The Research Journal of the Costume Culture, 27(3), 264-273. doi:10.29040/rjcc.2019.27.3.264
  5. Bornmann, L., Marx, W., Gasparyan, A. Y., & Kitas, G. D. (2012). Diversity, value and limitations of the journal impact factor and alternative metrics. Rheumatology International, 32(7), 1861-1867. doi:10.1007/s00296-011-2276-1
  6. Chang, K. (2022). Microplastic research network analysis based on informetrics bigdata. Unpublished doctoral dissertation, Hoseo University, Seoul, Korea.
  7. Choi, Y.-H., Jeong, J., & Lee, K.-H. (2021). Research trends and knowledge structure of digital transformation in fashion. Journal of Digital Convergence, 19(3), 319-329. doi:10.14400/JDC.2021.19.3.319
  8. Choi, Y.-H., Kim, S. E., & Lee, K.-H. (2021). Faux fur trade networks using macroscopic data: A social network approach. Sustainability, 13(3), 1427. doi:10.3390/su13031427
  9. Choi, Y.-H., & Lee, K.-H. (2019). Diffusion of veganism in fashion and beauty -A semantic network analysis-. Journal of the Korean Society of Costume, 69(6), 75-94. doi:10.7233/jksc.2019.69.6.075
  10. Choi, Y.-H., & Lee, K.-H. (2020). Informatics analysis of consumer reviews for 「Frozen 2」 fashion collaboration products -Semantic networks and sentiment analysis-. The Research Journal of the Costume Culture, 28(2), 265-284. doi:10.29049/rjcc.2020.28.2.265
  11. Choi, Y.-H., & Lee, K.-H. (2021). Changes in consumer perception of one-mile wear and home wear: The impact of Covid-19 outbreak. Journal of Fashion Business, 25(2), 110-126. doi:10.12940/jfb.2021.25.2.110
  12. Culnan, M. J., O'Reilly III, C. A., & Chatman, J. A. (1990). Intellectual structure of research in organizational behavior, 1972-1984: A cocitation analysis. Journal of the American Society for Information Science, 41(6), 453-458. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<453::AID-ASI13>3.0.CO;2-E
  13. Dabas, C. S., & Whang, C. (2022). A systematic review of drives of sustainable fashion consumption: 25 Years of research evolution. Journal of Global Fashion Marketing, 13(2), 151-167. doi:10.1080/20932685.2021.2016063
  14. Dahesh, M. B., Tabarsa, G., Zandieh, M., & Hamidizadeh, M. (2020). Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis. Technology in Society, 63, 101399. doi:10.1016/j.techsoc.2020.101399
  15. Diodato, V. (1994). Dictionary of bibliometrics. New York: Haworth Press.
  16. Durisin, B., Calabretta, G., & Parmeggiani, V. (2010). The intellectual structure of product innovation research: A bibliometric study of the Journal of Product Innovation Management, 1984-2004. Journal of Product Innovation Management, 27(3), 437-451. doi:10.1111/j.1540-5885.2010.00726.x
  17. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7
  18. Garfield, E., & Welljams-Dorof, A. (1992). Citation data: Their use as quantitative indicators for science and technology evaluation and policy-making. Science and Public Policy, 19(5), 321-327. doi:10.1093/spp/19.5.321
  19. Ge, J., Wang, X., Guan, Q., Li, W., Zhu, H., & Yao, M. (2016). World rare earths trade network: Patterns, relations and role characteristics. Resources Policy, 50, 119-130. doi:10.1016/j.resourpol.2016.09.002
  20. Ha, Y. (2019). Does need for touch matter in the context of apparel online shopping? Compensatory role of online aesthetic and instrumental cues. The Research Journal of the Costume Culture, 27(1), 46-56. doi:10.29049/rjcc.2019.27.1.046
  21. Han, H. (2019). Influencing factors on purchase intention for smart healthcare clothing by gender and age -Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness-. The Research Journal of the Costume Culture, 27(6), 615-631. doi:10.29049/rjcc.2019.27.6.615
  22. Han, K.-H. (2021). A study on leggings perception change with big data analysis: Based on Covid-19. The Korean Journal of Sport, 19(3), 51-65. doi:10.46669/kss.2021.19.3.005
  23. Hani, S. I. M. B. (2021). The effectiveness of the online educational platform blackboard in managing education processes at the university of hail a field study from the faculty members' point of view. Turkish Journal of Computer and Mathematics Education, 12(11), 3574-3581.
  24. Hoffman, D. L., & Holbrook, M. B. (1993). The intellectual structure of consumer research: A bibliometric study of author cocitations in the first 15 years of the Journal of Consumer Research. Journal of Consumer Research, 19(4), 505-517. doi:10.1086/209319
  25. Jeong, S. W., & Ha, S. (2020). Consumer acceptance of retail service robots. The Research Journal of the Costume Culture, 28(4), 409-419. doi:10.29049/rjcc.2020.28.4.409
  26. Ju, N., Lee, H.-J., & Lee, K.-H. (2019). Changes in athleisure wear trade networks -A social network approach-. The Research Journal of the Costume Culture, 27(3), 251-263. doi:10.29049/rjcc.2019.27.3.251
  27. Kim, D. J., & Lee, S. H. (2019). A study of consumer perception on fashion show using big data analysis. Journal of Fashion Business, 23(3), 85-100. doi:10.12940/jfb.2019.23.3.85
  28. Kim, J., Choi, Y.-H., & Lee, K.-H. (2021). Media agenda on visual impairment: A comparison of mass media and social media. The Korean Journal of Visual Impairment, 37(4), 67-92. doi:10.35154/kjvi.2021.37.4.67
  29. Kim, J. A., Huh, S., & Chu, M. S. (2014). Correlation among the citation indices of Korean scientific journals listed in international databases. Science Editing, 1(1), 27-36. doi:10.6087/kcse.2014.1.27
  30. Kim, S., Jang, S., Choi, W., Youn, C., & Lee, Y. (2021). Contactless service encounters among millennials and generation Z: The effects of millennials and gen Z characteristics on technology self-efficacy and preference for contactless service. Journal of Research in Interactive Marketing, 16(1), 82-100. doi:10.1108/JRIM-01-2021-0020
  31. Korea Citation Index. (n.d.). KCI citation index explanation. Retrieved May 1, 2022, from https://www.kci.go.kr/kciportal/po/citationindex/explanation.kci
  32. Krackhardt, D. (1987). QAP partialling as a test of spuriousness. Social Networks, 9(2), 171-186. doi:10.1016/0378-8733(87)90012-8
  33. Kwahk, K. Y. (2014). Social network analysis. Seoul: Chungram.
  34. Lee, K.-H., Kim, J.-Y., & Seo, H.-J. (2019). College student adoption of smart learning management system -Implementing Blackboard learn-. The Research Journal of the Costume Culture, 27(5), 512-523. doi:10.29049/rjcc.2019.27.5.512
  35. Lee, K. Y. (2016). Analysis on intellectual structure of Korean language education using author co-citation analysis: Focused on Journal of Korean Language Education. Unpublished master's thesis, Yonsei University, Seoul, Korea.
  36. Lee, M. Y., & Lee, J. (2019). Research trends in Journal of Fashion Business -A social network analysis of keywords in fashion marketing and design area-. Journal of Fashion Business, 23(3), 51-66. doi:10.12940/jfb.2019.23.3.51
  37. Lee, S., & Chun, J. (2021). Network analysis of the intellectual structure of addiction research in social sciences: Based on the KCI articles published in 2019. The Journal of the Korea Contents Association, 21(10), 21-37. doi:10.5392/JKCA.2021.21.10.021
  38. Lim, C. M. (2019). Perceived values, price fairness, and behavioral intentions toward luxury fashion brands -A comparison of luxury, luxury-bargain, and non-luxury consumers-. The Research Journal of the Costume Culture, 27(1), 20-32. doi:10.29049/rjcc.2019.27.1.020
  39. Lokke-Andersen, C. B., Wang, Q. J., & Giacalone, D. (2021). User experience design approaches for accommodating high "need for touch" consumers in ecommerce. Journal of Sensory Studies, 37(2), e12727. doi:10.1111/joss.12727
  40. Mitchell, J. C. (Ed.). (1969). Social networks in urban situations: Analyses of personal relationships in Central African towns. Manchester: Manchester University Press.
  41. Park, H. W., & Leydesdorff, L. (2004). Understanding the KrKwic: A computer program for the analysis of Korean text. Journal of the Korean Data Analysis Society, 6(5), 1377-1387.
  42. Park, J. (2019). The adverse impact of personal protective equipment on firefighters' cognitive functioning. The Research Journal of the Costume Culture, 27(1), 1-10. doi:10.29049/rjcc.2019.27.1.001
  43. Parush, A., Wacht, O., Gomes, R., & Frenkel, A. (2020). Human factor considerations in using personal protective equipment in the COVID-19 pandemic context: Binational survey study. Journal of Medical Internet Research, 22(6), e19947. doi:10.2196/19947
  44. Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348-349.
  45. Qasem, Z. (2021). The effect of positive TRI traits on centennials adoption of try-on technology in the context of E-fashion retailing. International Journal of Information Management, 56, 102254. doi:10.1016/j.ijinfomgt.2020.102254
  46. Retzer, V., & Jurasinski, G. (2009). Towards objectivity in research evaluation using bibliometric indicators: A protocol for incorporating complexity. Basic and Applied Ecology, 10(5), 393-400. doi:10.1016/j.baae.2008.09.001
  47. Seo, H.-J., Choi, Y.-H., Oh, S.-T., & Lee, K.-H. (2019). Keyword networks in RJCC research -A co-word analysis and clutering-. The Research Journal of the Costume Culture, 27(3), 193-205. doi:10.29049/rjcc.2019.27.3.193
  48. Seon, J.-H., Kim, S. E., Lee, H.-J., & Lee, K.-H. (2019). Evolution of the intellectual structure of clothing and textiles literature -A bibliometric study of RJCC-. The Research Journal of the Costume Culture, 27(4), 299-309. doi:10.29040/rjcc.2019.27.4.299
  49. Shin, H. K. (2020). A case study on value creation of fashion brands using content collaboration targeting MZ generation. The Research Journal of the Costume Culture, 28(6), 830-844. doi:10.29049/rjcc.2020.28.6.830
  50. Tenaya, A. A. N. A. M. K. (2021). Hegemoni fashion barat pada busana bangsawan di Bali utara (1800-1940). Mudra Jurnal Seni Budaya, 36(2), 245-253. doi:10.31091/mudra
  51. Thanuskodi, S. (2010). Journal of Social Sciences: A bibliometric study. Journal of Social Sciences, 24(2), 77-80. doi:10.1080/09718923.2010.11892847
  52. Wakita, K., & Tsurumi, T. (2007). Finding community structure in mega-scale social networks. Algorithms, 2(1), 1-9. https://doi.org/10.3390/a2010001
  53. Wang, L., Zhao, L., Mao, G., Zuo, J., & Du, H. (2017). Way to accomplish low carbon development transformation: A bibliometric analysis during 1995-2014. Renewable and Sustainable Energy Reviews, 68(1), 57-69. doi:10.1016/j.rser.2016.08.021
  54. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. London: Cambridge University Press.
  55. White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. doi:10.1002/asi.4630320302
  56. Wibisono, A. B., & Fachira, I. (2021). Factors influencing online impulsive buying behavior in Indonesia. MIMBAR: Jurnal Sosial dan Pembangunan, 37(1), 127-137.
  57. Woo, H., & Kim, S. (2021). An expansion of the brand and message framing effects on smart health-care clothing. Journal of Product & Brand Management, 31(4), 622-636. doi:10.1108/JPBM-11-2020-3199
  58. Zhu, Y.-P., & Park, H.-W. (2019). Evaluating blockchain research trend using bibliometrics-based network analysis. Journal of Digital Convertgence, 17(6), 219-227. doi:10.14400/JDC.2019.17.6.219