DOI QR코드

DOI QR Code

알루미늄 스퍼터링 처리 의류소재의 스텔스 특성과 전자파 차단 및 전기적 특성에 관한 연구 - 밀도 변화를 중심으로 -

Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change -

  • 한혜리 (동국대학교 대학원 뷰티아트케어학과)
  • Han, Hye Ree (Dept. of Beauty Art Care, Graduate School of Dongguk University)
  • 투고 : 2022.07.22
  • 심사 : 2022.08.09
  • 발행 : 2022.08.31

초록

This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.

키워드

참고문헌

  1. Baker, A. A., Engwall, A. M., Bimo, L. B., Bae, J. H., Shim, S. J., Moody, J. D., & Kuchevev, S. O. (2022). Tantalum suboxide films with tunable composition and electrical resistivity deposited by reactive magnetron sputtering. Coatings, 12(7), 917. doi:10.3390/coatings12070917
  2. Baptista, A., Silva, F., Porteiro, J., Miguez, J., & Pinto, G. (2018). Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 8(11), 402. doi:10.3390/coatings8110402
  3. Cen, C., Wu, H., Lee, C., Fan, L., & Liu, F. (2019). Experimental investigation on the sputtering and micro-explosion of emulsion fuel droplets during impact on a heated surface. International Journal of Heat and Mass Transfer, 132, 130-137. doi:10.1016/j.ijheatmasstransfer.2018.12.007
  4. Chankitmunkong, S., Eskin, D., Limmaneevichitr, C., Kengkla, N., & Diewwanit, O. (2022). Characterization of the anodic film and corrosion resistance of an A535 aluminum alloy after intermetallics removal by different etching time. Metals, 12, 1140. doi:10.3390/met12071140
  5. Chen, L., Ren, Z., Liu, X., Wang, K., & Wang, Q. (2021). Infrared-visible compatible stealth based on Al-SiO2 nanoparticle composite film. Optics Communications, 482, 126608. doi:10.1016/j.optcom.2020.126608
  6. Chen, T., Yang, E. K., & Lee, Y. H. (2021). Development of virtual upcycling fashion design based on 3-dimensional digital clothing technology. The Research Journal of the Costume Culture, 29(3), 374-387. doi:10.29049/rjcc.2021.29.3.374
  7. Cheng, X., Wu, J., Yao, C., & Yang, G. (2019). Aluminum hypophosphite and aluminum phenylphosphinate: A comprehensive comparison of chemical interaction during pyrolysis in flame-retarded glass-fiber-reinforced polyamide 6. Journal of Fire Sciences, 37(3), 193-212. doi:10.1177/0734904119836208
  8. Dehghan, K., Shi, Z., Woodrum, T. H., Brewer, S., & Sacks, R. (1994). Surface features of conductors eroded by sputtering in a magnetron glow discharge plasma. Applied Spectroscopy, 48(5), 553-560. doi:10.1366/0003702944924808
  9. Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33.
  10. Han, H. R. (2019). Characteristics of infrared blocking, stealth and color difference of aluminum sputtered fabrics. Journal of the Korean Society of Clothing and Textiles, 43(4), 592-604. doi:10.5850/JKSCT.2019.43.4.592
  11. Han, H. R. (2022). A study on thermal and electrical properties of molybdenum sputtered clothing materials. The Research Journal of the Costume Culture, 30(1), 88-101. doi:10.29049/rjcc.2022.30.1.88
  12. Hasan, S., Jewel, M. U., Karakalos, S. G., Gaevski, M., & Iftikhar, A. (2022). Comparative spectroscopic study of aluminum nitride grownby MOCVD in H2 and N2 reaction environment. Coatings, 12(7), 924. doi:10.3390/coatings12070924
  13. Hou, J., Cai, Z., & Lu, K. (2017). Cone calorimeter evaluation of reinforced hybrid wood-aluminum composites. Journal of Fire Sciences, 35(2), 118-131. doi:0.1177/0734904116683717 https://doi.org/10.1177/0734904116683717
  14. Iqbal, A., & Yasin, F. M. (2018). Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review. Sensors, 18(6), 1797. doi:10.3390/s18061797
  15. Jones, A. H. S., Camino, D., Teer, D. G., & Jiang, J. (1998). Novel high wear resistant diamond-like carbon coatings deposited by magnetron sputtering of carbon targets. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 212(4), 301-306. doi:10.1243/1350650981542119
  16. Kadioglu, F., & Alaboyun, O. Z. (2022). Damping contribution of the glass reinforced aluminum laminates epoxy to the aluminum based-sandwich structures. Journal of Sandwich Structures & Materials, 24(3), 1611-1628. doi:10.1177/10996362211053636
  17. Kino, H., Ikuse, K., Dam, H., & Hamaguchi, S. (2021). Characterization of descriptors in machine learning for data-based sputtering yield prediction. AIP Physics of Plasmas, 28(1), 013504. doi:10.1063/5.0006816
  18. Lai, H.-C., Tsai, H.-H., Hung, K.-Y., & Feng, H.-P. (2015). Fabrication of hydroxyapatite targets in radio frequency sputtering for surface modification of titanium dental implants. Journal of Intelligent Material Systems and Structures, 26(9), 1050-1058. doi:10.1177/1045389X14530593
  19. Lee, S. Y., & Lee, Y. H. (2019). Characteristics of eco-friendly design in contemporary children's fashion collection. The Research Journal of the Costume Culture, 27(4), 384-397. doi:10.29049/rjcc.2019.27.4.384
  20. Liu, S., Li, J., Zhang, S., Zhang, X., Ma, J., Wang, N., . . . Chen, S. (2020). Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Applied Bio Materials, 3(2), 848-858. doi:10.1021/acsabm.9b00942
  21. Ma, Y., Li, L., Qian, J., Qu, W., Luo, R., Wu, F., & Chen, R. (2021). Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Materials, 39, 203-224. doi:10.1016/j.ensm.2021.04.012
  22. Ni, H., Lu, C., Zhang, Y., Wang, X., Zhu, Y., Lv, S., & Zhang, J. (2022). Effects of sodium carbonate and calcium oxide on roasting denitrification of recycled aluminum dross with high nitrogen content. Coatings, 12(7), 922. doi:10.3390/coatings12070922
  23. Omoniyi, P., Abolusoro, O., Olorunpomi, O., Ajiboye, T., Adewuyi, O., Aransiola, O., & Akinlabi, E. (2022). Corrosion properties of aluminum alloy reinforced withwood particles. Journal of Composites Science, 6(7), 189. doi:10.3390/jcs6070189
  24. Qadir, M., Li, Y., & Wen, C. (2019). Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 89, 14-32. doi:10.1016/j.actbio.2019.03.006
  25. Salunkhe, P., Ali, M. A. V., & Kekuda, D. (2020). Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Materials Research Express, 7(1), 016427. doi:10.1088/2053-1591/ab69c5
  26. Samuel, E., Nabawy, A. M., Samuel, A. M., Doty, H. W., Songmene, V., & Samuel, F. H. (2022). Effect of Zr and Ti addition and aging treatment on the microstructure and tensile properties of Al-2%Cu-based alloys. Materials, 15, 4511. doi:10.3390/ma15134511
  27. Shahidi, S., & Ghoranneviss, M. (2016). Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Clothing and Textiles Research Journal, 34(1), 37-47. doi:10.1177/0887302X15594455
  28. Shi, Z., Woodrum, T. H., Dehghan, K., Brewer, S., & Sacks, R. (1992). Sputtering behavior of a magnetron glow discharge device. Applied Spectroscopy, 46(5), 749-757. doi:10.1366/0003702924124709
  29. Shin, S. M., & Kim, M. J. (2015). Effect of eco-label recognition on corporate association and purchasing intention in fashion business. The Research Journal of the Costume Culture, 23(3), 523-536. doi:10.7741/rjcc.2015.23.3.523
  30. Shin, S. M., & Lim, Y. (2021). A study on consumer confusion, value, and price sensitivity of eco-friendly fashion product. The Research Journal of the Costume Culture, 29(1), 48-64. doi:10.29049/rjcc.2021.29.1.48
  31. Sripradit, A., & Theeradejvanichkul, T. (2022). A self-color-changing film with periodic nanostructure for anti-counterfeit application. Applied Sciences, 12(13), 6776. doi:10.3390/app12136776
  32. Tan, X. Q., Liu, J. Y., Niu, J. R., Liu, J. Y., & Tian, J. Y. (2018). Recent progress in magnetron sputtering technology used on fabrics. Materials, 11(10), 1953. doi:10.3390/ma11101953
  33. Xue, F., He, D., & Zhou, H. (2022). Effect of ultrasonic vibration in friction stir welding of 2219 aluminum alloy: An effective model for predicting weld strength. Metals, 12, 1101. doi:10.3390/met12071101
  34. Yeole, P., Ning, H., & Hassen, A. A. (2021). Development and characterization of a polypropylene matrix composite and aluminum hybrid material. Journal of Thermoplastic Composite Materials, 34(3), 364-381. doi:10.1177/0892705719843974
  35. Yuan, X., Wei, Q., Chen, D., & Xu, W. (2016). Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering. Textile Research Journal, 86(8), 887-894. doi:10.1177/0040517515595034