DOI QR코드

DOI QR Code

Development of new models to predict the compressibility parameters of alluvial soils

  • Alzabeebee, Saif (Department of Roads and Transport Engineering, University of Al-Qadisiyah) ;
  • Al-Taie, Abbas (Department of Civil Engineering, Al-Nahrain University)
  • 투고 : 2022.04.04
  • 심사 : 2022.08.12
  • 발행 : 2022.09.10

초록

Alluvial soil is challenging to work with due to its high compressibility. Thus, consolidation settlement of this type of soil should be accurately estimated. Accurate estimation of the consolidation settlement of alluvial soil requires accurate prediction of compressibility parameters. Geotechnical engineers usually use empirical correlations to estimate these compressibility parameters. However, no attempts have been made to develop correlations to estimate compressibility parameters of alluvial soil. Thus, this paper aims to develop new models to predict the compression and recompression indices (Cc and Cr) of alluvial soils. As part of the study, geotechnical laboratory tests have been conducted on large number of undisturbed samples of local alluvial soil. The obtained results from these tests in addition to available results from the literature from different parts in the world have been compiled to form the database of this study. This database is then employed to examine the accuracy of the available empirical correlations of the compressibility parameters and to develop the new models to estimate the compressibility parameters using the nonlinear regression analysis. The accuracy of the new models has been accessed using mean absolute error, root mean square error, mean, percentage of predictions with error range of ±20%, percentage of predictions with error range of ±30%, and coefficient of determination. It was found that the new models outperform the available correlations. Thus, these models can be used by geotechnical engineers with more confidence to predict Cc and Cr.

키워드

참고문헌

  1. Al-Khafaji, A.W., Maillacheruvu, K.Y. and Jacobs, R. (2017), "Analysis of empirical compression index equations using the void ratio", Proceeding of the 9th International Structural Engineering and Construction Conference, Valencia, Spain.
  2. Al-Khafaji, A.W.N. and Andersland, O.B. (1992), "Equations for compression index approximation", J. Geotech. Eng., 118(1), 148-153. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(148).
  3. Al-Taie, A.J. (2015), "Profiles and geotechnical properties for some basra soils", Al-Khaw. Eng. J., 11(2), 74-85.
  4. Al-Taie, A.J., Al-Bayati, A.F. and Taki, Z.N.M. (2017), "Compression index and compression ratio prediction by artificial neural networks", J. Eng. Uni. Baghd., 23(12), 96-106.
  5. Al-Taie, A.J., Al-Jeznawi, D. and Faraj, N. (2021), "Engineering characterization of quaternary sandy soil in the mesopotamia plain", Inter. Rev. Civil Eng., 12(1), 40. https://doi.org/10.15866/irece.v12i1.18770.
  6. Albusoda, B.S. and Al-Taie, A.J. (2010), "statistical estimation of the compressibility of baghdad cohesive soil", J. Eng. Uni. Baghd., 16(4), 5863-5876.
  7. Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastr. Solut., 5(3), 1-10. https://doi.org/10.1007/s41062-020-00321-y.
  8. Alzabeebee, S. (2022a), "Application of EPR-MOGA in computing the liquefaction-induced settlement of a building subjected to seismic shake", Eng. Comput., 38, 437-448. https://doi.org/10.1007/s00366-020-01159-9.
  9. Alzabeebee, S. (2022b), "Explicit soft computing model to predict the undrained bearing capacity of footing resting on aggregate pier reinforced cohesive ground", Innov. Infrastr. Solut., 7, 105. https://doi.org/10.1007/s41062-021-00706-7.
  10. Alzabeebee, S., Alshkane, Y.M. and Rashed, K.A. (2021a), "Evolutionary computing of the compression index of fine-grained soils", Arab. J. Geosci., 14(19), 1-17. https://doi.org/10.1007/s12517-021-08319-1.
  11. Alzabeebee, S., Alshkane, Y.M., Al-Taie, A.J. and Rashed, K.A. (2021b), "Soft computing of the recompression index of fine-grained soils", Soft Comput., 25, 15297-15312. https://doi.org/10.1007/s00500-021-06123-3.
  12. Alzabeebee, S., Mohamad, S.A. and Al-Hamd, R.K.S. (2021c), "Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve", Road Mat. Pav. Des., 1-18. https://doi.org/10.1080/14680629.2021.1995471.
  13. Alzabeebee, S., Mohammed, D.A. and Alshkane, Y.M. (2022b), "Experimental study and soft computing modeling of the unconfined compressive strength of limestone rocks considering dry and saturation conditions", Rock Mech. Rock Eng., 55(9), 5535-5554. https://doi.org/10.1007/s00603-022-02948-y.
  14. Alzabeebee, S., Zuhaira, A.A. and Al-Hamd, R.K.S. (2022a), "Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles", Geomech. Eng., 28(4), 397-404. https://doi.org/10.12989/gae.2022.28.4.397.
  15. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
  16. ASTM D1452/D1452M-16 (2016), Standard Practice for Soil Exploration and Sampling by Auger Borings, ASTM International, West Conshohocken, PA, USA.
  17. ASTM D2435-04 (2011), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, USA.
  18. Azzouz, A.S., Krizek, R.J. and Corotis, R.B. (1976), "Regression analysis of soil compressibility", Soil. Found., 16(2), 19-29. https://doi.org/10.3208/sandf1972.16.2_19.
  19. Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
  20. Bowles, J.E. (1979), Physical and Geotechnical Properties of Soils, McGraw-Hill Book Company.
  21. Bowles, J.E. (1996), Foundation Analysis and Design, 5th Edition, McGraw-Hill.
  22. Bozzano, F., Caserta, A., Govoni, A., Marra, F. and Martino, S. (2008), "Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome", J. Geophys. Res., 113, B01303. https://doi.org/10.1029/2006JB004873.
  23. Breysse, D., Niandou, H., Elachachi, S.M. and Houy, L. (2005), "A generic approach to soil structure interaction considering the effects of soil heterogeneity", Geotechnique, 55(2), 143-150. https://doi.org/10.1680/geot.2005.55.2.143.
  24. Budhu, M. (2007), Soil Mechanic and Foundations, 2nd Edition, Wiley.
  25. Campolunghi, M.P., Capelli, G., Funiciello, R. and Lanzini, M. (2007), "Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy)", Eng. Geol., 89, 9-35. http://doi.org/10.1016/j.enggeo.2006.08.003.
  26. Chin, C.T. and Liu, C.C. (1996), "Volumetric and undrained behaviors of Taipei silty clay", J. Chin. Inst. Civil Hydraul. Eng., 9(4), 665-678.
  27. Chisholm, H. (1911), Encyclopaedia Britannica, 11th Edition, Cambridge University Press.
  28. Chretien, M., Fabre, R., Denis, A. and Marache, A. (2007), "Recherche des parametres d'identification geotechnique optimaux pour une classification des sols sensibles au retrait-gonflement", Revue Francaise de Geotechnique, 120-121, 91-106. https://doi.org/10.1051/geotech/2007120091.
  29. Cozzolino, V.M. (1961), "Statistical forecasting of compression index", Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering Paris, 1, 51-53.
  30. Culshaw, M.G., Cripps, J.C., Bell, F.G. and Moon, C.F. (1991), "Engineering geology of quaternary soils: I. Processes and properties", Geolog. Soc. London, Eng. Geol. Spec. Publ., 7, 3-38. https://doi.org/10.1144/GSL.ENG.1991.007.01.01.
  31. Eskisar, T. (2021), "Empirical compressibility index equations for artificial remolded clay mixtures", Arab. J. Sci. Eng., 46, 10917-10930. https://doi.org/10.1007/s13369-021-05629-0.
  32. Eskisar, T., Kuruoglu, M., Altun, S., Ozyalin, S. and Yilmaz, R.H. (2014), "Site response of deep alluvial deposits in the northern coast of Izmir Bay (Turkey) and a microzonation study based on geotechnical aspects", Eng. Geol., 172, 95-116. https://doi.org/10.1016/j.enggeo.2014.01.006.
  33. Gomes, L.M. and Ladeira, F.L. (1995), "Equacoes para determinar o indice de compressao. Engenharia Civil-UM", Revista do Departamento de Engenharia Civil da Universidade do Minho, 2.
  34. Gullu, H., Canakci, H. and Alhashemy, A. (2018), "Use of ranking measure for performance assessment of correlations for the compression index", Eur. J. Environ. Civil Eng., 22(5), 578-595. https://doi.org/10.1080/19648189.2016.1210036.
  35. Gunduz, Z. and Arman, H. (2007), "Possible relationships between compression and recompression indices of a low-plasticity clayey soil", Arab. J. Sci. Eng., 32(2), 179-190.
  36. Hanzawa, H. (1977), "Field and laboratory behaviour of Khor Al-Zubair Clay, Iraq", Soil. Found., 17(4), 17-30. https://doi.org/10.3208/sandf1972.17.4_17.
  37. Harsini, K.M., Khamehchiyan, M., Moghadas, N.H. and Amini, A. (2007), "Geotechnical properties of bahmanshir series, Southwest Khuzestan, Iran", Iran. J. Sci. Techn. Trans. A, 31(A1), 123-129. https://doi.org/10.22099/ijsts.2007.2322.
  38. Holtz, R.D., Kovacs, W.D. and Sheahan, T.E. (2011), An Introduction to Geotechnical Engineering, 2nd Edition, Prentice Hall.
  39. Hough, B.K. (1957), Basic Soils Engineering, The Ronald Press Company.
  40. Isik, N.S. (2009), "Estimation of swell index of fine grained soils using regression equations and artificial neural networks", Scientif. Res. Essay, 4(10), 1047-1056.
  41. Jackson, J.A. (1997), Glossary of Geology, 4th Edition, American Geological Institute, Alexandria, Viriginia.
  42. Kaufman, R.I. and Sherman, W.C. (1964), "Engineering measurements for Port Allen Lock", J. Soil Mech. Found. Div., 90(5), 221-248. https://doi.org/10.1061/JSFEAQ.0000653.
  43. Khan, M.A., Sadique, M.R., Harahap, I.H., Zaid, M. and Alam, M. (2022), "Static and dynamic analysis of the shielded tunnel in alluvium soil with 2D FEM model", Transp. Infrastr. Geotech., 9, 73-100. https://doi.org/10.1007/s40515-021-00160-z.
  44. Kiersch, G.A. (1996), "Environmental/engineering geology of alluvial setting", Eng. Geol., 45, 325-346. https://doi.org/10.1016/S0013-7952(96)00020-8.
  45. Koppula, S.D. (1981), "Statistical estimation of compression index", Geotech. Test. J., 4(2), 68-73. https://doi.org/10.1520/GTJ10768J
  46. Kordnaeij, A., Kalantary, F., Kordtabar, B. and Mola-Abasi, H. (2015), "Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties", Soil. Found., 55(6), 1335-1345. https://doi.org/10.1016/j.sandf.2015.10.001.
  47. Koumoto, T. and Kaku, K. (1987), "Study of the compressibility of undistrubed soils: Consolidation pressure-compressive strain relationship", Bull. Facult. Agricult.-Saga Univ., 63, 39-46.
  48. Kulhawy, F.H. and Mayne, P.H. (1990), Manuel on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, EPRI.
  49. Kurnaz, T.F., Dagdeviren, U., Yildiz, M. and Ozkan, O. (2016), "Prediction of compressibility parameters of the soils using Artificial Neural Network", SpringerPlus, 5, 1801. https://doi.org/10.1186/s40064-016-3494-5.
  50. Lat, D.C., Ali, N., Jais, I.B.M., Baharom, B., Yunus, N.Z.M., Salleh, S.M. and Azmi, N.A.C. (2018), "Compressibility characteristics of Sabak Bernam marine clay", IOP Conf. Ser. Mater. Sci. Eng., 342, 012082.
  51. Lee, C., Yun, T.S., Lee, J., Bahk, J.J. and Santamarin, J.C. (2011), "Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea", Eng. Geol., 117, 151-158. https://doi.org/10.1016/j.enggeo.2010.10.014.
  52. Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  53. Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020b), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
  54. MacDonald, A.B. and Sauer, E.K. (1970), "The engineering significance of Pleistocene stratigraphy in the Saskatoon area, Saskatchewan, Canada", Can. Geotech. J., 7(2), 116-126. https://doi.org/10.1139/t70-015.
  55. Masoud, A. (2015), "Geotechnical evaluation of the alluvial soils for urban land management zonation in Gharbiya governorate, Egypt", J. Afr. Earth Sci., 101, 360-374. https://doi.org/10.1016/j.jafrearsci.2014.10.009.
  56. Masoud, A.A. (2016), "Geotechnical site suitability mapping for urban land management in Tanta District, Egypt", Arab. J. Geosci., 9, 340. https://doi.org/10.1007/s12517-016-2363-4.
  57. May, M.E., Souissi, D., Said, H.B. and Dlala, M. (2015), "Geotechnical characterization of the quaternary alluvial deposits in Tunis City (Tunisia)", J. Afr. Earth Sci., 108, 89-100. https://doi.org/10.1016/j.jafrearsci.2015.05.003.
  58. McCabe, B.A., Sheil, B.B., Long, M.M., Buggy, F.J. and Farrell, E.R. (2014), "Empirical correlations for the compression index of irish soft soils", Proc. Inst. Civil Eng. Geotech. Eng., 167(6), 510-517. https://doi.org/10.1680/geng.13.00116.
  59. Miller, B.A. and Juilleret, J. (2020), "The colluvium and alluvium problem: Historical review and current state of definitions", Earth-Sci. Rev., 209, 103316. https://doi.org/10.1016/j.earscirev.2020.103316.
  60. Mohammadzadeh, D., Bazaz, J.B. and Alavi, A.H. (2014), "An evolutionary computational approach for formulation of compression index of fine-grained soils", Eng. Appl. Artif. Intel., 33, 58-68. https://doi.org/10.1016/j.engappai.2014.03.012.
  61. Mohammadzadeh, S.D., Bolouri Bazaz, J., Vafaee Jani Yazd, S.H. and Alavi, A.H. (2016), "Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming", Environ. Earth Sci., 75(3), 1-11. https://doi.org/10.1007/s12665-015-4889-2.
  62. MolaAbasi, H., Shooshpasha, I. and Ebrahimi, A. (2016), "Prediction of the compression index of saturated clays (Cc) using polynomial models", Scientia Iranica, 23(2), 500-507. https://doi.org/10.24200/sci.2016.2134.
  63. Nzeukou, A.N., Fagel, N., Njoya, A.M., Kamgang, V.B., Medjo, R.E. and Melo, U.C. (2013), "Mineralogy and physico-chemical properties of alluvial clays from Sanaga valley (Center, Cameroon): Suitability for ceramic application", Appl. Clay Sci., 83, 238-243. https://doi.org/10.1016/j.clay.2013.08.038.
  64. Ozer, M., Isik, N.S. and Orhan, M. (2008), "Statistical and neural network assessment of the compression index of clay-bearing soils", Bull. Eng. Geol. Environ., 67(4), 537-545. https://doi.org/10.1007/s10064-008-0168-8.
  65. Pant, R.R. (2007), "Evaluation of consolidation parameters of cohesive soils using PCPT method", MSc. Dissertation, Louisiana State University, USA.
  66. Park, H.I. and Lee, S.R. (2011), "Evaluation of the compression index of soils using an artificial neural network", Comput. Geotech., 38(4), 472-481. https://doi.org/10.1016/j.compgeo.2011.02.011.
  67. Raspa, G., Moscatelli, M., Stigliano, F., Patera, A., Marconi, F., Folle, D., Vallone, R., Mancini, M., Cavinato, G.P., Milli, S. and Costa, J.F.C.L. (2008), "Geotechnical characterization of the upper Pleistocene-Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: Cross-validation results", Eng. Geol., 101, 251-268. https://doi.org/10.1016/j.enggeo.2008.06.007.
  68. Saeedy, H.S. and Mollah, M.A. (1990), "Geotechnical study of the north and northwest coast of The Arabian Gulf", Eng. Geol., 28(1-2), 27-40. https://doi.org/10.1016/0013-7952(90)90032-V.
  69. Samir, D. (2013), "Geological and geotechnical characteristics of the soils in the region of Setif", Eur. Scientif. J., 9(21), 484.
  70. Sowers, G.B. (1970), Introductory Soil Mechanics and Foundations, 3rd Edition, The Macmillan Company, Collier-Macmillan Limited.
  71. Tan, Y.C., Gue, S.S., Ng, H.B. and Lee, P.T. (2004), "Some geotechnical properties of klang clay", Proceedings of the Malaysian Geotechnical Conference, Kuala Lumpur, 179-185.
  72. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, 3rd Edition, John Wiley and Sons, Inc..
  73. Vinod, P. and Bindu, J. (2010), "Compression index of highly plastic clays-an empirical correlation", Ind. Geotech. J., 40(3), 174-180.
  74. Yilmaz, I. and Karacan, E. (2002), "Geotechnical properties of clayey alluvial soils in the Erbaa Basin, Turkey", Int. Geol. Rev., 44(2), 179-190. https://doi.org/10.2747/0020-6814.44.2.179.
  75. Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y. and Ding, X. (2021b), "Application of deep learning algorithms in geotechnical engineering: a short critical review", Artif. Intel. Rev., 54(8), 5633-5673. https://doi.org/10.1007/s10462-021-09967-1.
  76. Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021a), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
  77. Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., Liu, Z. and Liu, H. (2020), "State-of-the-art review of soft computing applications in underground excavations", Geosci. Front., 11(4), 1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003.
  78. Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q. and Liu, H.L. (2021), "Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling", Undergr. Space, 6(4), 353-363. https://doi.org/10.1016/j.undsp.2019.12.003.
  79. Zuhaira, A.A., Al-Hamd, R.K.S., Alzabeebee, S. and Cunningham, L.S. (2021), "Numerical investigation of skimming flow characteristics over non-uniform gabion-stepped spillways", Innov. Infrastr. Solut., 6, 225. https://doi.org/10.1007/s41062-021-00579-w.