참고문헌
- Al-Khafaji, A.W., Maillacheruvu, K.Y. and Jacobs, R. (2017), "Analysis of empirical compression index equations using the void ratio", Proceeding of the 9th International Structural Engineering and Construction Conference, Valencia, Spain.
- Al-Khafaji, A.W.N. and Andersland, O.B. (1992), "Equations for compression index approximation", J. Geotech. Eng., 118(1), 148-153. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(148).
- Al-Taie, A.J. (2015), "Profiles and geotechnical properties for some basra soils", Al-Khaw. Eng. J., 11(2), 74-85.
- Al-Taie, A.J., Al-Bayati, A.F. and Taki, Z.N.M. (2017), "Compression index and compression ratio prediction by artificial neural networks", J. Eng. Uni. Baghd., 23(12), 96-106.
- Al-Taie, A.J., Al-Jeznawi, D. and Faraj, N. (2021), "Engineering characterization of quaternary sandy soil in the mesopotamia plain", Inter. Rev. Civil Eng., 12(1), 40. https://doi.org/10.15866/irece.v12i1.18770.
- Albusoda, B.S. and Al-Taie, A.J. (2010), "statistical estimation of the compressibility of baghdad cohesive soil", J. Eng. Uni. Baghd., 16(4), 5863-5876.
- Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastr. Solut., 5(3), 1-10. https://doi.org/10.1007/s41062-020-00321-y.
- Alzabeebee, S. (2022a), "Application of EPR-MOGA in computing the liquefaction-induced settlement of a building subjected to seismic shake", Eng. Comput., 38, 437-448. https://doi.org/10.1007/s00366-020-01159-9.
- Alzabeebee, S. (2022b), "Explicit soft computing model to predict the undrained bearing capacity of footing resting on aggregate pier reinforced cohesive ground", Innov. Infrastr. Solut., 7, 105. https://doi.org/10.1007/s41062-021-00706-7.
- Alzabeebee, S., Alshkane, Y.M. and Rashed, K.A. (2021a), "Evolutionary computing of the compression index of fine-grained soils", Arab. J. Geosci., 14(19), 1-17. https://doi.org/10.1007/s12517-021-08319-1.
- Alzabeebee, S., Alshkane, Y.M., Al-Taie, A.J. and Rashed, K.A. (2021b), "Soft computing of the recompression index of fine-grained soils", Soft Comput., 25, 15297-15312. https://doi.org/10.1007/s00500-021-06123-3.
- Alzabeebee, S., Mohamad, S.A. and Al-Hamd, R.K.S. (2021c), "Surrogate models to predict maximum dry unit weight, optimum moisture content and California bearing ratio form grain size distribution curve", Road Mat. Pav. Des., 1-18. https://doi.org/10.1080/14680629.2021.1995471.
- Alzabeebee, S., Mohammed, D.A. and Alshkane, Y.M. (2022b), "Experimental study and soft computing modeling of the unconfined compressive strength of limestone rocks considering dry and saturation conditions", Rock Mech. Rock Eng., 55(9), 5535-5554. https://doi.org/10.1007/s00603-022-02948-y.
- Alzabeebee, S., Zuhaira, A.A. and Al-Hamd, R.K.S. (2022a), "Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles", Geomech. Eng., 28(4), 397-404. https://doi.org/10.12989/gae.2022.28.4.397.
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
- ASTM D1452/D1452M-16 (2016), Standard Practice for Soil Exploration and Sampling by Auger Borings, ASTM International, West Conshohocken, PA, USA.
- ASTM D2435-04 (2011), Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International, West Conshohocken, PA, USA.
- Azzouz, A.S., Krizek, R.J. and Corotis, R.B. (1976), "Regression analysis of soil compressibility", Soil. Found., 16(2), 19-29. https://doi.org/10.3208/sandf1972.16.2_19.
- Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Bowles, J.E. (1979), Physical and Geotechnical Properties of Soils, McGraw-Hill Book Company.
- Bowles, J.E. (1996), Foundation Analysis and Design, 5th Edition, McGraw-Hill.
- Bozzano, F., Caserta, A., Govoni, A., Marra, F. and Martino, S. (2008), "Static and dynamic characterization of alluvial deposits in the Tiber River Valley: New data for assessing potential ground motion in the City of Rome", J. Geophys. Res., 113, B01303. https://doi.org/10.1029/2006JB004873.
- Breysse, D., Niandou, H., Elachachi, S.M. and Houy, L. (2005), "A generic approach to soil structure interaction considering the effects of soil heterogeneity", Geotechnique, 55(2), 143-150. https://doi.org/10.1680/geot.2005.55.2.143.
- Budhu, M. (2007), Soil Mechanic and Foundations, 2nd Edition, Wiley.
- Campolunghi, M.P., Capelli, G., Funiciello, R. and Lanzini, M. (2007), "Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy)", Eng. Geol., 89, 9-35. http://doi.org/10.1016/j.enggeo.2006.08.003.
- Chin, C.T. and Liu, C.C. (1996), "Volumetric and undrained behaviors of Taipei silty clay", J. Chin. Inst. Civil Hydraul. Eng., 9(4), 665-678.
- Chisholm, H. (1911), Encyclopaedia Britannica, 11th Edition, Cambridge University Press.
- Chretien, M., Fabre, R., Denis, A. and Marache, A. (2007), "Recherche des parametres d'identification geotechnique optimaux pour une classification des sols sensibles au retrait-gonflement", Revue Francaise de Geotechnique, 120-121, 91-106. https://doi.org/10.1051/geotech/2007120091.
- Cozzolino, V.M. (1961), "Statistical forecasting of compression index", Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering Paris, 1, 51-53.
- Culshaw, M.G., Cripps, J.C., Bell, F.G. and Moon, C.F. (1991), "Engineering geology of quaternary soils: I. Processes and properties", Geolog. Soc. London, Eng. Geol. Spec. Publ., 7, 3-38. https://doi.org/10.1144/GSL.ENG.1991.007.01.01.
- Eskisar, T. (2021), "Empirical compressibility index equations for artificial remolded clay mixtures", Arab. J. Sci. Eng., 46, 10917-10930. https://doi.org/10.1007/s13369-021-05629-0.
- Eskisar, T., Kuruoglu, M., Altun, S., Ozyalin, S. and Yilmaz, R.H. (2014), "Site response of deep alluvial deposits in the northern coast of Izmir Bay (Turkey) and a microzonation study based on geotechnical aspects", Eng. Geol., 172, 95-116. https://doi.org/10.1016/j.enggeo.2014.01.006.
- Gomes, L.M. and Ladeira, F.L. (1995), "Equacoes para determinar o indice de compressao. Engenharia Civil-UM", Revista do Departamento de Engenharia Civil da Universidade do Minho, 2.
- Gullu, H., Canakci, H. and Alhashemy, A. (2018), "Use of ranking measure for performance assessment of correlations for the compression index", Eur. J. Environ. Civil Eng., 22(5), 578-595. https://doi.org/10.1080/19648189.2016.1210036.
- Gunduz, Z. and Arman, H. (2007), "Possible relationships between compression and recompression indices of a low-plasticity clayey soil", Arab. J. Sci. Eng., 32(2), 179-190.
- Hanzawa, H. (1977), "Field and laboratory behaviour of Khor Al-Zubair Clay, Iraq", Soil. Found., 17(4), 17-30. https://doi.org/10.3208/sandf1972.17.4_17.
- Harsini, K.M., Khamehchiyan, M., Moghadas, N.H. and Amini, A. (2007), "Geotechnical properties of bahmanshir series, Southwest Khuzestan, Iran", Iran. J. Sci. Techn. Trans. A, 31(A1), 123-129. https://doi.org/10.22099/ijsts.2007.2322.
- Holtz, R.D., Kovacs, W.D. and Sheahan, T.E. (2011), An Introduction to Geotechnical Engineering, 2nd Edition, Prentice Hall.
- Hough, B.K. (1957), Basic Soils Engineering, The Ronald Press Company.
- Isik, N.S. (2009), "Estimation of swell index of fine grained soils using regression equations and artificial neural networks", Scientif. Res. Essay, 4(10), 1047-1056.
- Jackson, J.A. (1997), Glossary of Geology, 4th Edition, American Geological Institute, Alexandria, Viriginia.
- Kaufman, R.I. and Sherman, W.C. (1964), "Engineering measurements for Port Allen Lock", J. Soil Mech. Found. Div., 90(5), 221-248. https://doi.org/10.1061/JSFEAQ.0000653.
- Khan, M.A., Sadique, M.R., Harahap, I.H., Zaid, M. and Alam, M. (2022), "Static and dynamic analysis of the shielded tunnel in alluvium soil with 2D FEM model", Transp. Infrastr. Geotech., 9, 73-100. https://doi.org/10.1007/s40515-021-00160-z.
- Kiersch, G.A. (1996), "Environmental/engineering geology of alluvial setting", Eng. Geol., 45, 325-346. https://doi.org/10.1016/S0013-7952(96)00020-8.
- Koppula, S.D. (1981), "Statistical estimation of compression index", Geotech. Test. J., 4(2), 68-73. https://doi.org/10.1520/GTJ10768J
- Kordnaeij, A., Kalantary, F., Kordtabar, B. and Mola-Abasi, H. (2015), "Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties", Soil. Found., 55(6), 1335-1345. https://doi.org/10.1016/j.sandf.2015.10.001.
- Koumoto, T. and Kaku, K. (1987), "Study of the compressibility of undistrubed soils: Consolidation pressure-compressive strain relationship", Bull. Facult. Agricult.-Saga Univ., 63, 39-46.
- Kulhawy, F.H. and Mayne, P.H. (1990), Manuel on Estimating Soil Properties for Foundation Design, Electric Power Research Institute, EPRI.
- Kurnaz, T.F., Dagdeviren, U., Yildiz, M. and Ozkan, O. (2016), "Prediction of compressibility parameters of the soils using Artificial Neural Network", SpringerPlus, 5, 1801. https://doi.org/10.1186/s40064-016-3494-5.
- Lat, D.C., Ali, N., Jais, I.B.M., Baharom, B., Yunus, N.Z.M., Salleh, S.M. and Azmi, N.A.C. (2018), "Compressibility characteristics of Sabak Bernam marine clay", IOP Conf. Ser. Mater. Sci. Eng., 342, 012082.
- Lee, C., Yun, T.S., Lee, J., Bahk, J.J. and Santamarin, J.C. (2011), "Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea", Eng. Geol., 117, 151-158. https://doi.org/10.1016/j.enggeo.2010.10.014.
- Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020b), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- MacDonald, A.B. and Sauer, E.K. (1970), "The engineering significance of Pleistocene stratigraphy in the Saskatoon area, Saskatchewan, Canada", Can. Geotech. J., 7(2), 116-126. https://doi.org/10.1139/t70-015.
- Masoud, A. (2015), "Geotechnical evaluation of the alluvial soils for urban land management zonation in Gharbiya governorate, Egypt", J. Afr. Earth Sci., 101, 360-374. https://doi.org/10.1016/j.jafrearsci.2014.10.009.
- Masoud, A.A. (2016), "Geotechnical site suitability mapping for urban land management in Tanta District, Egypt", Arab. J. Geosci., 9, 340. https://doi.org/10.1007/s12517-016-2363-4.
- May, M.E., Souissi, D., Said, H.B. and Dlala, M. (2015), "Geotechnical characterization of the quaternary alluvial deposits in Tunis City (Tunisia)", J. Afr. Earth Sci., 108, 89-100. https://doi.org/10.1016/j.jafrearsci.2015.05.003.
- McCabe, B.A., Sheil, B.B., Long, M.M., Buggy, F.J. and Farrell, E.R. (2014), "Empirical correlations for the compression index of irish soft soils", Proc. Inst. Civil Eng. Geotech. Eng., 167(6), 510-517. https://doi.org/10.1680/geng.13.00116.
- Miller, B.A. and Juilleret, J. (2020), "The colluvium and alluvium problem: Historical review and current state of definitions", Earth-Sci. Rev., 209, 103316. https://doi.org/10.1016/j.earscirev.2020.103316.
- Mohammadzadeh, D., Bazaz, J.B. and Alavi, A.H. (2014), "An evolutionary computational approach for formulation of compression index of fine-grained soils", Eng. Appl. Artif. Intel., 33, 58-68. https://doi.org/10.1016/j.engappai.2014.03.012.
- Mohammadzadeh, S.D., Bolouri Bazaz, J., Vafaee Jani Yazd, S.H. and Alavi, A.H. (2016), "Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming", Environ. Earth Sci., 75(3), 1-11. https://doi.org/10.1007/s12665-015-4889-2.
- MolaAbasi, H., Shooshpasha, I. and Ebrahimi, A. (2016), "Prediction of the compression index of saturated clays (Cc) using polynomial models", Scientia Iranica, 23(2), 500-507. https://doi.org/10.24200/sci.2016.2134.
- Nzeukou, A.N., Fagel, N., Njoya, A.M., Kamgang, V.B., Medjo, R.E. and Melo, U.C. (2013), "Mineralogy and physico-chemical properties of alluvial clays from Sanaga valley (Center, Cameroon): Suitability for ceramic application", Appl. Clay Sci., 83, 238-243. https://doi.org/10.1016/j.clay.2013.08.038.
- Ozer, M., Isik, N.S. and Orhan, M. (2008), "Statistical and neural network assessment of the compression index of clay-bearing soils", Bull. Eng. Geol. Environ., 67(4), 537-545. https://doi.org/10.1007/s10064-008-0168-8.
- Pant, R.R. (2007), "Evaluation of consolidation parameters of cohesive soils using PCPT method", MSc. Dissertation, Louisiana State University, USA.
- Park, H.I. and Lee, S.R. (2011), "Evaluation of the compression index of soils using an artificial neural network", Comput. Geotech., 38(4), 472-481. https://doi.org/10.1016/j.compgeo.2011.02.011.
- Raspa, G., Moscatelli, M., Stigliano, F., Patera, A., Marconi, F., Folle, D., Vallone, R., Mancini, M., Cavinato, G.P., Milli, S. and Costa, J.F.C.L. (2008), "Geotechnical characterization of the upper Pleistocene-Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: Cross-validation results", Eng. Geol., 101, 251-268. https://doi.org/10.1016/j.enggeo.2008.06.007.
- Saeedy, H.S. and Mollah, M.A. (1990), "Geotechnical study of the north and northwest coast of The Arabian Gulf", Eng. Geol., 28(1-2), 27-40. https://doi.org/10.1016/0013-7952(90)90032-V.
- Samir, D. (2013), "Geological and geotechnical characteristics of the soils in the region of Setif", Eur. Scientif. J., 9(21), 484.
- Sowers, G.B. (1970), Introductory Soil Mechanics and Foundations, 3rd Edition, The Macmillan Company, Collier-Macmillan Limited.
- Tan, Y.C., Gue, S.S., Ng, H.B. and Lee, P.T. (2004), "Some geotechnical properties of klang clay", Proceedings of the Malaysian Geotechnical Conference, Kuala Lumpur, 179-185.
- Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, 3rd Edition, John Wiley and Sons, Inc..
- Vinod, P. and Bindu, J. (2010), "Compression index of highly plastic clays-an empirical correlation", Ind. Geotech. J., 40(3), 174-180.
- Yilmaz, I. and Karacan, E. (2002), "Geotechnical properties of clayey alluvial soils in the Erbaa Basin, Turkey", Int. Geol. Rev., 44(2), 179-190. https://doi.org/10.2747/0020-6814.44.2.179.
- Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y. and Ding, X. (2021b), "Application of deep learning algorithms in geotechnical engineering: a short critical review", Artif. Intel. Rev., 54(8), 5633-5673. https://doi.org/10.1007/s10462-021-09967-1.
- Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021a), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
- Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., Liu, Z. and Liu, H. (2020), "State-of-the-art review of soft computing applications in underground excavations", Geosci. Front., 11(4), 1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003.
- Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q. and Liu, H.L. (2021), "Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling", Undergr. Space, 6(4), 353-363. https://doi.org/10.1016/j.undsp.2019.12.003.
- Zuhaira, A.A., Al-Hamd, R.K.S., Alzabeebee, S. and Cunningham, L.S. (2021), "Numerical investigation of skimming flow characteristics over non-uniform gabion-stepped spillways", Innov. Infrastr. Solut., 6, 225. https://doi.org/10.1007/s41062-021-00579-w.