Acknowledgement
This research was funded by the General project of Sichuan Natural Science Foundation (Grant No: 2022NSFSC0279, 2022NSFSC1009), the Key Scientific Research Fund of Xihua University (Grant No: Z17113), and Graduate Innovation Fund of Xihua University (Grant No: YCJJ2021056).
References
- Afraei, S., Shahriar, K. and Madani, S.H. (2018), "Statistical assessment of rock burst potential and contributions of considered predictor variables in the task", Tunn. Undergr. Space Technol., 72, 250-271. https://doi.org/10.1016/j.tust.2017.10.009.
- Al-Salloum, Y., Alsayed, S., Almusallam, T., Ibrahim, S.M. and Abbas, H. (2014), "Investigations on the influence of radial confinement in the impact response of concrete", Comput. Concrete, 14(6), 675-694. https://doi.org/10.12989/cac.2014.14.6.675.
- Bernabe, Y. and Revil, A. (1995), "Pore-scale heterogeneity, energy dissipation and the transport properties of rocks", Geophys. Res. Lett., 22(12), 1529-1532. https://doi.org/10.1016/0148-9062(96)85059-5.
- Cai, W., Dou, L.M., Han, R.J., Zhang, G.H., and Li, X.W. (2011), "Bursting liability of coal based on damage statistical constitutive model", J. China Coal Soc., 36(S2), 346-352. https://doi.org/10.13225/j.cnki.jccs.2011.s2.029.
- Demirdag, S., Tufekci, K., Kayacan, R., Yavuz, H. and Altindag, R. (2010), "Dynamic mechanical behavior of some carbonate rocks", Int. J. Rock Mech. Min. Sci., 47(2), 307-312. https://doi.org/10.1016/j.ijrmms.2009.12.003.
- Feng, J.J., Wang, E.Y., Shen, R.X., Chen, L., Li, X.L. and Xu, Z.Y. (2016), "Investigation on energy dissipation and its mechanism of coal under dynamic loads", Geomech. Eng., 11(5), 657-670. https://doi.org/10.12989/gae.2016.11.5.657.
- Ghadernejad, S., Nejati, H.R. and Yagiz, S. (2020), "A new rock brittleness index on the basis of punch penetration test data", Geomech. Eng., 21(4), 391-399. https://doi.org/10.12989/gae.2020.21.4.391.
- Gong, F.Q., Si, X.F., Li, X.B. and Wang, S.Y. (2019), "Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar", Int. J. Rock Mech. Min. Sci., 113, 211-219. https://doi.org/10.1016/j.ijrmms.2018.12.005.
- Hu, Q.B., Liang, H.A., Yang, T., Cheng, X.J., Chen, H.K. and Zhang, L.P. (2020), "A new method for rock brittleness evaluation based on statistical damage constitutive relation", J Harbin Inst. Technol., 52(11), 147-156. https://doi.org/10.11918/201906094.
- Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci., 11(10), 389-392. https://doi.org/10.1016/0148-9062(74)91109-7.
- Kim, E.H., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 14(2), 151-159. https://doi.org/10.12989/gae.2018.14.2.151.
- Kivi, R.I., Ameri, M. and Molladavoodi, H. (2018), "Shale brittleness evaluation based on energy balance analysis of stress-strain curves", J. Pet. Sci. Eng., 167, 1-19. https://doi.org/10.1016/j.petrol.2018.03.061.
- Liu, X.H., Dai, F., Zhang, R. and Liu, J.F. (2015), "Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity", Environ. Earth Sci., 73(10), 5933-5949. https://doi.org/10.1007/s12665-015-4106-3.
- Lu, Y.Q., Liu, X.H., Xie, J., He, Z.Q. and Li, C. (2019), "The energy evolution characteristics of coal under different dynamic strain rates and confining pressures", Therm. Sci., 23(3), 1409-1416. https://doi.org/10.2298/tsci180810205l.
- Meng, F.Z., Zhou, H., Zhang, C.Q., Xu, R.C. and Lu, J.J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress-strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6.
- Moska, R., Kasza, P. and Maslowski, M. (2018), "Rock anisotropy and brittleness from laboratory ultrasonic measurements in the service of hydraulic fracturing", Acta Geodyn. Geomater., 15(1), 67-76. https://doi.org/10.13168/AGG.2018.0005.
- Munoz, H., Taheri, A. and Chanda, E.K. (2016), "Fracture energy-based brittleness index development and brittleness quantification by pre-peak strength parameters in rock uniaxial compression", Rock Mech. Rock Eng., 49(12), 4587-4606. https://doi.org/10.1007/s00603-016-1071-4.
- Omidvar, M., Iskander, M. and Bless, S. (2012), "Stress-strain behavior of sand at high strain rates", Int. J. Impact Eng., 49, 192-213. https://doi.org/10.1016/j.ijimpeng.2012.03.004.
- Ozfirat, M. K., Yenice, H., Simsir, F. and Yarali, O. (2016), "A new approach to rock brittleness and its usability at prediction of drillability". J. Afr. Earth Sci., 119, 94-101. https://doi.org/10.1016/j.jafrearsci.2016.03.017.
- Rybacki, E., Meier, T. and Dresen, G. (2016), "What controls the mechanical properties of shale rocks?-Part II: Brittleness", J. Pet. Sci. Eng., 144, 39-58. https://doi.org/10.1016/j.petrol.2016.02.022
- Steffler, E.D., Epstein, J.S. and Conley, E.G. (2003), "Energy partitioning for a crack under remote shear and compression", Int. J. Fract., 120(4), 563-580. https://doi.org/10.1023/A:1025511703698.
- Ulusay, R. (2015), The ISRM Suggested Methods for Rock Characterization Testing and Monitoring 2007-2014, Springer, Cham., Switzerland.
- Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunn. Undergr. Space Technol., 16(1), 49-57. https://doi.org/10.1016/S0886-7798(01)00030-X.
- Xie, H.P., Wang, J.A. and Qan, P.G. (1996), "Fractal characters of micropore evolution in marbles", Phys. Lett. A., 218(3-6), 275-280. https://doi.org/10.1016/0375-9601(96)00390-8.
- Yagiz, S. (2009), "Assessment of brittleness using rock strength and density with punch penetration test", Tunn. Undergr. Space Technol., 24(1), 66-74. https://doi.org/10.1016/j.tust.2008.04.002.
- Zhou, C.T., Zhang, K., Wang, H.B., Xu, Y.X. and Afraei, S. (2020), "A plastic strain based statistical damage model for brittle to ductile behaviour of rocks", Geomech. Eng., 21(4), 349-356. https://doi.org/10.12989/gae.2020.21.4.349.