Acknowledgement
The research described in this paper was financially Supported by National Natural Science Foundation of China (52169022); Hubei Natural Resources Science and Technology Project (ZRZY2022KJ17).
References
- An, R., Kong, L., Zhang, X. and Li, C. (2022), "Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography", J. Rock Mech. Geotech. Eng., 14(3), 851-860. https://doi.org/10.1016/j.jrmge.2021.10.004.
- Bi, G., Ren, C., Xu, H. and Jiang, D. (2022), "Creep behavior of cohesive soils associated with different plasticity indexes", Environ. Earth Sci., 81(5), 1-9. https://doi.org/10.1007/s12665-022-10271-6.
- Chen, J.P., Yuan, J., Ye, L.Y. and Peng, Q.W. (2020), "Microstructure change of soft soil under consolidation creep", Sci. Technol. Eng., 20(10), 4087-4094. https://doi.org/10.3969/j.issn.1671-1815.2020.10.044.
- Dahhaoui, H., Belayachi, N., Zadjaoui, A. and Nishimura, T. (2022), "One-dimensional compression creep change under temperature and suction effects", Int. J. Geotech. Eng., 16(6), 670-681. https://doi.org/10.1080/19386362.2021.2025306.
- Gao, G.R. (2019), Modern Geotechnics, Beijing Science Press, Beijing, China.
- Ghiyas, S.M.R. and Bagheripour, M.H. (2020), "Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation", Geomech. Eng., 20(3), 207-220. https://doi.org/10.12989/gae.2020.20.3.207.
- Guo, Y., Ni, W. and Liu, H. (2021), "Effects of dry density and water content on compressibility and shear strength of loess", Geomech. Eng., 24(5), 419-430. https://doi.org/10.12989/gae.2021.24.5.419.
- Ibrahim, N., Fayed, A.L., Ahmed, A. and Hammad, M.S. (2022), "Effect of vertical drains and preloading on the creep behavior of soft clay", Innov. Infrastr. Solut., 7(3), 1-12. https://doi.org/10.1007/s41062-022-00780-5.
- Jin, P., Zhen, W., Chen, B., Sun, D.a., Gao, Y. and Xiong, Y. (2021), "Effect of microstructure on water retention behavior of lateritic clay over a wide suction range", Geomech. Eng., 25(5), 417-428. https://doi.org/10.12989/gae.2021.25.5.417.
- Kaczmarek, L. and Dobak, P. (2017), "Contemporary overview of soil creep phenomenon", Contemp. Trend. Geosci., 6, 28-40. https://doi.org/10.1515/ctg-2017-0003.
- Kaczmarek, L.D., Dobak, P.J. and Kielbasinski, K. (2017), "Preliminary investigations of creep strain of Neogene clay from Warsaw in drained triaxial tests assisted by computed microtomography", Studia Geotechnica et Mechanica, 39(2), 35-49. https://doi.org/10.1515/sgem-2017-0014.
- Kamoun, J. and Bouassida, M. (2018), "Creep behavior of unsaturated cohesive soils subjected to various stress levels", Arab. J. Geosci., 11(4), https://doi.org/10.1007/s12517-12018-13399-12514.
- Karim, M.R., Manivannan, G., Gnanendran, C. and Lo, S.R. (2011), "Predicting the long-term performance of a geogrid-reinforced embankment on soft soil using two-dimensional finite element analysis", Can. Geotech. J., 48(5), 741-753. https://doi.org/10.1139/t10-104.
- Leoni, M., Karstunen, M. and Vermeer, P. (2008), "Anisotropic creep model for soft soils", Geotechnique, 58(3), 215-226. https://doi.org/10.1680/geot.2008.58.3.215.
- Li, J. and Kong, L. (2021), "Creep properties of expansive soils under triaxial drained conditions and its nonlinear constitutive model", Periodica Polytechnica Civil Eng., 65(4), 1269-1278. https://doi.org/10.3311/PPci.18406.
- Li, J.X., Wang, C.M. and Zhang, X.W. (2010), "Creep properties and micropore changes of soft soil under different drainage conditions", Rock Soil. Mech., 31(11), 3493-3498. https://doi.org/10.3969/j.issn.1000-7598.2010.11.023.
- Liingaard, M., Augustesen, A. and Lade, P.V. (2004), "Characterization of models for time-dependent behavior of soils", Int. J. Geomech., 4(3), 157-177. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(157)
- Long, Z., Cheng, Y., Yang, G., Yang, D. and Xu, Y. (2021), "Study on triaxial creep test and constitutive model of compacted red clay", Int. J. Civil Eng., 19(5), 517-531. https://doi.org/10.1007/s40999-020-00572-x.
- Mesri, G., Febres-Cordero, E., Shields, D. and Castro, A. (1981), "Shear stress-strain-time behaviour of clays", Geotechnique, 31(4), 537-552. https://doi.org/10.1680/geot.1981.31.4.537.
- MWR (China) (2019), GB/T 50123-2019 Standard for Geotechnical Test Methods. China Planning Press, Beijing, China.
- Singh, A. and Mitchell, J.K. (1968), "General stress-strain-time function for soils", J. Mech. Found. Div., 94(1), 21-46. https://doi.org/10.1061/JSFEAQ.0001084.
- Tavenas, F., Leroueil, S., Rochelle, P.L. and Roy, M. (1978), "Creep behaviour of an undisturbed lightly overconsolidated clay", Can. Geotech. J., 15(3), 402-423. https://doi.org/10.1139/t78-037.
- Wu, F.C. (1984), "Some characteristics of adsorption-bound water measurements and seepage in clayey soils", Chin. J. Geotech. Eng., 6, 84-93.
- Xie, G., Deng, M.Y. and Zhang, L. (2013), "A study on the influence of electrolytes on clay bound water", Dril. Fluid Complet. Fluid., 30(6), 1-4.
- Zhang, Y., Sha, Y., Chen, J., Gao, B. and Wu, Z. (2019), "Experimental study on creep behavior of red clay of existing foundation in Guiyang City", Carsologica Sinica, 38(4), 627-634. https://doi.org/10.1016/j.virs.2023.05.009
- Zhu, W., Dai, G. and Gong, W. (2021), "Study on cyclic cumulative deformation characteristics and the equivalent cyclic creep model of soft clay", Math. Prob. Eng., 2021, Article ID 5588494. https://doi.org/10.1155/2021/5588494.