DOI QR코드

DOI QR Code

U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN

  • 유지윤 (전남대학교 에너지자원공학과) ;
  • 윤대웅 (전남대학교 에너지자원공학과)
  • Yu, Jiyun (Department of Energy & Resources Engineering, Chonnam National University) ;
  • Yoon, Daeung (Department of Energy & Resources Engineering, Chonnam National University)
  • 투고 : 2022.07.07
  • 심사 : 2022.08.29
  • 발행 : 2022.08.31

초록

탄성파 탐사 자료 획득 시 자료의 일부가 손실되는 문제가 발생할 수 있으며 이를 위해 자료 보간이 필수적으로 수행된다. 최근 기계학습 기반 탄성파 자료 보간법 연구가 활발히 진행되고 있으며, 특히 영상처리 분야에서 이미지 초해상화에 활용되고 있는 CNN (Convolutional Neural Network) 기반 알고리즘과 GAN (Generative Adversarial Network) 기반 알고리즘이 탄성파 탐사 자료 보간법으로도 활용되고 있다. 본 연구에서는 손실된 탄성파 탐사 자료를 높은 정확도로 복구하는 보간법을 찾기 위해 CNN 기반 알고리즘인 U-Net과 GAN 기반 알고리즘인 cWGAN (conditional Wasserstein Generative Adversarial Network)을 탄성파 탐사 자료 보간 모델로 사용하여 성능 평가 및 결과 비교를 진행하였다. 이때 예측 과정을 Case I과 Case II로 나누어 모델 학습 및 성능 평가를 진행하였다. Case I에서는 규칙적으로 50% 트레이스가 손실된 자료만을 사용하여 모델을 학습하였고, 생성된 모델을 규칙/불규칙 및 샘플링 비율의 조합으로 구성된 총 6가지 테스트 자료 세트에 적용하여 모델 성능을 평가하였다. Case II에서는 6가지 테스트 자료와 동일한 형식으로 샘플링된 자료를 이용하여 해당 자료별 모델을 생성하였고, 이를 Case I과 동일한 테스트 자료 세트에 적용하여 결과를 비교하였다. 결과적으로 cWGAN이 U-Net에 비해 높은 정확도의 예측 성능을 보였으며, 정량적 평가지수인 PSNR과 SSIM에서도 cWGAN이 높은 값이 나타나는 것을 확인하였다. 하지만 cWGAN의 경우 예측 결과에서 추가적인 잡음이 생성되었으며, 잡음을 제거하고 정확도를 개선하기 위해 앙상블 작업을 수행하였다. Case II에서 생성된 cWGAN 모델들을 이용하여 앙상블을 수행한 결과, 성공적으로 잡음이 제거되었으며 PSNR과 SSIM 또한 기존의 개별 모델 보다 향상된 결과를 나타내었다.

Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.

키워드

과제정보

이 연구는 2022년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(머신러닝 기반 해저면 특성 분류 기술개발)(관리번호: 20220254).

참고문헌

  1. Arjovsky, M., Chintala, S., and Bottou, L., 2017, Wasserstein Generative Adversarial Networks, Proceedings of the 34th International Conference on Machine Learning, PMLR 70, 214-223. https://proceedings.mlr.press/v70/arjovsky17a.html
  2. Bae, W., Kwon, Y., and Ha, W., 2020, Research Trend analysis for Seismic Data Interpolation Methods using Machine Learning, Geophysics and Geophysical Exploration, 23(3), 192-207. https://doi.org/10.7582/GGE.2020.23.3.00192
  3. Bauer, E., and Kohavi, R., 1999, An empirical comparison of voting classification algorithm: bagging, boosting, and variants, Machine Learning, 36(1-2), 105-142. https://link.springer.com/article/10.1023/A:1007515423169
  4. Breiman, L., 1996, Bagging predictors, Machine Learning, 24, 123-140. https://link.springer.com/article/10.1007/BF00058655
  5. Choi, J., Byun, J., and Seol, S. J., 2014, Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing, Geophysics and Geophysical Exploration, 17(2), 88-94. https://doi.org/10.7582/GGE.2014.17.2.088
  6. Dietterich, T. G., 2000a, An experimental comparison of decision trees: bagging, boosting, and randomization, Machine Learning, 40(2), 139-157. https://link.springer.com/article/10.1023/A:1007607513941
  7. Dietterich, T. G., 2000b, Ensemble method in machine learning, LNCS, 1857, 1-15. https://link.springer.com/chapter/10.1007/3-540-45014-9_1
  8. Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A., 2017, Image-to-Image Translation with Conditional Adversarial Networks, IEEE conference on computer vision and pattern recognition, 1125-1134. https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
  9. Ji, J. and Choi, Y. G., 2010, 3D Seismic Data Processing Methodology using Public Domain Software System, Geophysics and Geophysical Exploration, 13(2), 159-168. https://koreascience.kr/article/JAKO201026359284114.page 1026359284114.page
  10. Kim, B., Jeong, S., and Byun, J., 2012, Curvelet transform-based POCS in f-k domain, SEG Expanded Abstracts of the 82nd Annual International Meeting, 1-5. https://doi.org/10.1190/segam2012-1063.1
  11. Kwak, S., and Kim, H., 2014, Comparison of ensemble pruning methods using Lasso-bagging and WAVE-bagging, Journal of the Korean Data & Information Science Society, 25(6), 1371-1383. https://doi.org/10.7465/jkdi.2014.25.6.1371
  12. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W., 2017, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, Computer Vision and Pattern Recognition, 5, 4681-4690. https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
  13. Lee, B., Yang, J., and Kim, S., 2009, Ensemble Learning of Regional Experts, Journal of KIISE, 15(2), 135-139. https://koreascience.kr/article/JAKO200907841292048.page
  14. Liu, B., and Sacchi, M. D., 2004, Minimum weighted norm interpolation of seismic records, Geophysics, 69(6), 1560-1568. https://doi.org/10.1190/1.1836829
  15. Naghizadeh, M., and Sacchi, M. D., 2010, On sampling functions and Fourier reconstruction methods, Geophysics, 75(6), WB137-WB151. https://doi.org/10.1190/1.3503577
  16. Mirza, M., and Osindero, S., 2014, Conditional Generative Adversarial Nets, arXiv preprint arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784
  17. Optiz, D., and Maclin, R., 1999, Popular ensemble methods: an empirical study, Journal of AIR, 11, 169-198. https://doi.org/10.1613/jair.614
  18. Porsani, M. J., 1999, Seismic trace interpolation using half-step prediction filters, Geophysics, 64(5), 1461-1467. https://doi.org/10.1190/1.1444650
  19. Ronneberger, O., Fischer, P., and Brox, T., 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation, Medical Image Computing and Computer-Assisted Intervention, 9351, 1-8. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
  20. Schonewille, M., Klaedtke, A., and Vigner, A., 2009, Anti-alias anti-leakage Fourier transform, SEG Expanded Abstracts of the 79th Annual International Meeting, 3249-3253. https://onepetro.org/SEGAM/proceedings-abstract/SEG09/All-SEG09/SEG-2009-3249/97241
  21. Siahkoohi, A., Kumar, R., and Herrmann, F., 2018, Seismic Data Reconstruction with Genenrative Adversarial Networks, 80th EAGE Conference and Exhibition, 2018, 1-5. https://doi.org/10.3997/2214-4609.201801393
  22. Spitz, S., 1991, Seismic trace interpolation in the F-X domain, Geophysics, 56(6), 785-794. https://doi.org/10.1190/1.1443096
  23. Wang, B., Zhang, N., Lu, W., and Wang, J., 2019, Deep-learning-based seismic data interpolation: A preliminary result, Geophysics, 84(1), V11-V20. https://doi.org/10.1190/geo2017-0495.1
  24. Wang, Y., Wang, B., Tu, N., and Geng, J., 2020, Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder, Geophysics, 85(2), V119-V130. https://doi.org/10.1190/geo2018-0699.1
  25. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., 2004, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transaction on Image Processing, 13(4), 600-612. https://ieeexplore.ieee.org/abstract/document/1284395 https://doi.org/10.1109/TIP.2003.819861
  26. Wei, Q., Li, X. Y., and Song, M. P., 2021, De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks, Computer and Geosciences, 154, 1-13. https://doi.org/10.1016/j.cageo.2021.104801
  27. Xu, S., Zhang, Y., and Lambare, G., 2010, Antileakage Fourier transform for seismic data regularization in higher dimentions, Geophysics, 75, WB113-WB120. https:doi.org/10.1190/1.1993713
  28. Yang, A. Y., and Suh, J. H., 2003, Applying Spitz Trace Interpolation Algorithm for Seismic Data, Geophysics, 6(4), 171-179. https://koreascience.kr/article/JAKO200307921810193.page 10193.page
  29. Yang, P., Gao, J., and Chen, W., 2012, Curvelet-based POCS interpolation of nonuniformly sampled seismic records, Journal of Applied Geophysics, 79, 90-99. https://doi.org/10.1016/j.jappgeo.2011.12.004