DOI QR코드

DOI QR Code

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M. (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Madani, K. (Djillali Liabes University of Sidi Bel Abbes) ;
  • Rezgani, L. (Department of Civil Engineering, Taher Moulay University of Saida) ;
  • Mallarino, S. (LaSIE, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, La Rochelle University) ;
  • Touzain, S. (LaSIE, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, La Rochelle University) ;
  • Campilho, R.D.S.G. (ISEP-School of Engineering, Polytechnic of Porto)
  • 투고 : 2021.08.07
  • 심사 : 2022.07.04
  • 발행 : 2022.09.10

초록

Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

키워드

참고문헌

  1. ABAQUS/CAE Ver 6.9 User's Manual (2005), Hibbitt, Karlsson.
  2. Adams, R.D. and Pepiatt. N.A. (1973), "Effect of poisson's ratio strains in adherents on stresses of an idealized lap joint", J. Strain Anal. Eng. Des., 8(2), 134-139. https://doi.org/10.1243/03093247V082134.
  3. Akpinar, S., Demir, K., Gavgali, E. and Yetim, A.F. (2021), "A study on the effects of nanostructure reinforcement on the failure load in adhesively bonded joints after the subjected to fully reversed fatigue load", J. Adhes., 1-25. https://doi.org/10.1080/00218464.2021.1947811.
  4. Akpinar, S., Doru, M.O., Ozel, A., Aydin, M.D. and Jahanpasand, H.G. (2013), "The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment", Compos.: Part B, 55, 55-64. https://doi.org/10.1016/j.compositesb.2013.05.056.
  5. Andreassi, L., Baudille, R. and Biancolini, M.E. (2007), "Spew formation in a single lap joint", Int. J. Adhes. Adhes., 27(6), 458-468. https://doi.org/10.1016/j.ijadhadh.2006.07.002.
  6. Avila, A.F. and Bueno, P.O. (2004), "Stress analysis on a wavy-lap bonded joint for composites", Int. J. Adhes. Adhes., 24(5), 407- 414. https://doi.org/10.1016/j.ijadhadh.2003.12.001.
  7. Bigwood, D.A. and Crocombe, A.D. (1990), "Non-linear adhesive bonded joint design analyses", Int. J. Adhes. Adhes., 10(1), 31- 41. https://doi.org/10.1016/0143-7496(90)90025-S.
  8. da Silva, L.F.M., Rodrigues, T.N.S.S., Figueiredo, M.A.V., de Moura, M.F.S.F. and Chousal, J.A.G. (2006), "Effect of adhesive type and thickness on the lap shear strength", J. Adhes., 82(11), 1091-1115. https://doi.org/10.1080/00218460600948511.
  9. De Neve, B. and Shanahan, M.E.R. (1992), "Effects of humidity on an epoxy adhesive", Int. J. Adhes. Adhes., 12(3), 191-196. https://doi.org/10.1016/0143-7496(92)90053-X.
  10. Demarkles, L.R. (1955), "Investigation of the use of a rubber analog in the study of stress distribution in riveted and cemented joints", Technical Note No. 3413, Nation. Advis. Comm. Aeronaut., Massachusetts Institute of Technology.
  11. Demir, K., Gavgali, E., Yetim, A.F. and Akpinar, S. (2021), "The effects of nanostructure additive on fracture strength in adhesively bonded joints subjected to fully reversed four-point bending fatigue load", Int. J. Adhes. Adhes., 110, 102943. https://doi.org/10.1016/j.ijadhadh.2021.102943.
  12. El Hannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326. https://doi.org/10.12989/sem.2016.59.2.313.
  13. Fitton, M.D. and Broughton, J.G. (2005), "Variable modulus adhesives:an approach to optimized joint performance", Int. J. Adhes. Adhes., 25(4), 329-336. https://doi.org/10.1016/j.ijadhadh.2004.08.002.
  14. Giovanni, B., Goglio, B. and Tarditi, A. (2002), "Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints", Int. J. Adhes. Adhes., 22(4), 273-282. https://doi.org/10.1016/S0143-7496(02)00004-0.
  15. Goland, M. and Reissner, E. (1944), "The stresses in cemented joints", J. Appl. Mech., 66, A17-A27. https://doi.org/10.1115/1.4009336.
  16. Harris, J.A. and Adams, R.D. (1984), "Strength prediction of bonded single lap joints by non-linear finite element methods", Int. J. Adhes. Adhes., 4(2), 65-78. https://doi.org/10.1016/0143- 7496(84)90103-9.
  17. Lang, T.P. and Mallick, P.K. (1998), "Effect of spew geometry on stresses in single lap adhesive joints", Int. J. Adhes. Adhes., 18(3), 167-177. https://doi.org/10.1016/S0143-7496(97)00056-0.
  18. Madani, K., Touzain, S., Feaugas, X., Cohendouz, S. and Ratwani, M. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93. https://doi.org/10.1016/j.commatsci.2009.12.005.
  19. McLaren, A.S. and Maclnnes, I. (1958), "The influence on the stress distribution in an adhesive lap joint of bending of the adhering sheets", Brit. J. Appl. Phys., 9, 72-77. https://doi.org/10.1088/0508-3443/9/2/306
  20. Oterkus, E., Barut, A., Madenci, E., SmeltzerIII, S.S. and Ambur, D.R. (2006), "Bonded lap joints of composite laminates with tapered edges", Int. J. Solid. Struct., 43(6), 1459-1489. https://doi.org/10.1016/j.ijsolstr.2005.07.035.
  21. Pires, I., Quintino, L., Durodola, J.F. and Beevers, A. (2003), "Performance of bi-adhesive bonded aluminium lap joints", Int. J. Adhes. Adhes., 23(3), 215-223. https://doi.org/10.1016/S0143-7496(03)00024-1.
  22. Rezgani, L., Madani, K., Feaugas, X., Touzain, S., Cohendoz, S. and Valette, J. (2016), "Influence of water ingress onto the crack propagation rate in a AA2024-T3 plate repaired by a carbon/epoxy patch", Aerosp. Sci. Technol., 55, 359-365. https://doi.org/10.1016/j.ast.2016.06.010.
  23. Rezgani, L., Madani, K., Mokhtari, M., Feaugas, X., Cohendoz, S., Touzain, S. and Mallarino, S. (2018), "Hygrothermal ageing effect of ADEKIT A140 adhesive on the J-integral of a plate repaired by composite patch", J. Adhes. Sci. Technol., 32(13), 1393-1409. https://doi.org/10.1080/01694243.2017.1415790.
  24. Sancaktar, E. and Nirantar, P. (2003), "Increasing strength of single lap joints of metal adherends by taper minimization", J. Adhes. Sci. Technol., 17(5), 55-67. https://doi.org/10.1163/156856103321340796.
  25. Sancaktar, E. and Simmons, S. (2000), "Optimization of adhesively bonded single lap joints by adherend notching", J. Adhes. Sci. Technol., 14(11), 1363-1404. https://doi.org/10.1163/156856100742258.
  26. Tsai, M.Y. and Morton, J. (1995), "The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints", Compos. Struct., 32(1-4), 123-131. https://doi.org/10.1016/0263-8223(95)00059-3.
  27. Viana, G., Costa, M., Banea, M.D. and da Silva, L.F.M. (2016), "A review on the temperature and moisture degradation of adhesive joints", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 231(5), 488-501. https://doi.org/10.1177/1464420716671503.
  28. Volkersen, O. (1938), "Die nietkraftverteilung in zugbeanspruchten mit konstanten laschenquerschnitten", Luftfahrtsforschung, 15, 41-47.
  29. Wahab, M.A., Ashcroft, I.A., Crocombe, A.D. and Shaw, S.J. (2001), "Diffusion of moisture in adhesively bonded joints", J. Adhes., 77(1), 43-80. https://doi.org/10.1080/00218460108030731.
  30. Zanni-Deffarges, M.P. and Shanahan, M.E.R. (1995), "Diffusion of water into an epoxy adhesive: Comparison between bulk behaviour and adhesive joints", Int. J. Adhes. Adhes., 15(3), 137-142. https://doi.org/10.1016/0143-7496(95)91624-F.
  31. Zhao, X., Adams, R.D. and da Silva, L.F.M. (2011), "Single lap joints with rounded adherend corners: experimental results and strength prediction", J. Adhes. Sci. Technol., 25(8), 837-856. https://doi.org/10.1163/016942410X520880
  32. Zheng, G., Liu, C., Han, X. and Li, W. (2020), "Effect of spew fillet on adhesively bonded single lap joints with CFRP and aluminum-alloy immersed in distilled water", Int. J. Adhes. Adhes., 99, 102590. https://doi.org/10.1016/j.ijadhadh.2020.102590.