과제정보
This research was financially supported by Korea Institute of Materials Science (PNK8560).
참고문헌
- A. F. alhosseini, M. Molaei, M.Nouri, KazemBabae, Antibacterial activity of bioceramic coatings on Mg and its alloys created by plasma electrolytic oxidation (PEO): A review, J. Magnesium Alloys, 10 (2022) 81-96. https://doi.org/10.1016/j.jma.2021.05.020
- J. Dong, T. Lin, H. Shao, H. Wang, X. Wang, K. Song, Q. Li, Advances in degradation behavior of biomedical magnesium alloys: A review, J. Alloys Compd., 908 (2022) 164600-164675. https://doi.org/10.1016/j.jallcom.2022.164600
- R. Moaref, M. H. Shahini, H. E. Mohammadloo, B. Ramezanzadeh, S. Yazdani, Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants-a review, Sustainable Chem. Pharm., 29 (2022) 100780-100797. https://doi.org/10.1016/j.scp.2022.100780
- R. Chaharmahali, A. F. alhosseini, KazemBabaei, Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review, J. Magnesium Alloys, 9 (2021) 21-40. https://doi.org/10.1016/j.jma.2020.07.004
- H. Y. Ha, J. Y. Kang, J. Yang, C. D. Yim, B. S. You, Role of Sn in corrosion and passive behavior of extruded Mg-5 wt%Sn, Corros. Sci., 102 (2016) 355-362. https://doi.org/10.1016/j.corsci.2015.10.028
- T. Zang, G. Meng, Y. Shao, Z. Cui, F.Wang, Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy, Corros. Sci., 53 (2011) 2934-2942. https://doi.org/10.1016/j.corsci.2011.05.035
- D. Kajanek, F. Pastorek, B. Hadzima, S. Bagherifard, M. Jambor, P. Belany, P. Minarik, Impact of shot peening on corrosion performance of AZ31 magnesium alloy coated by PEO: Comparison with conventional surface pre-treatments, Surf. Coat. Technol., 446 (2022) 128773-128792. https://doi.org/10.1016/j.surfcoat.2022.128773
- A. Jangde, S. Kumar, C. Blawert, Evolution of PEO coatings on AM50 magnesium alloy using phosphate-based electrolyte with and without glycerol and its electrochemical characterization, J. Magnesium Alloys, 8 (2020) 692-715. https://doi.org/10.1016/j.jma.2020.05.002
- J. Martin, A. V. Nomine, J. Stef, A. Nomine, J. X. Zou, G. Henrion, T. Grosdidi, The influence of metallurgical state of substrate on the efficiency of plasma electrolytic oxidation (PEO) process on magnesium alloy, Materials and Design, 178 (2019) 107859-107872. https://doi.org/10.1016/j.matdes.2019.107859
- S. Moon, Corrosion behavior of PEO-treated AZ31 Mg alloy in chloride solution, j. Soild State Electrochem., 18 (2014) 341-346. https://doi.org/10.1007/s10008-013-2247-4
- R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G. E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coating, Corros. Sci., 50 (2008) 1744-1752. https://doi.org/10.1016/j.corsci.2008.03.002
- E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, G.E. Thompson, Plasma electrolytic oxidation of pre-anodized aluminium, Corros. Sci., 51 (2009) 2897-2905. https://doi.org/10.1016/j.corsci.2009.08.004
- S. Moon, Y. Jeong, Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions, Corros. Sci., 51 (2009) 1506-1512. https://doi.org/10.1016/j.corsci.2008.10.039
- S. Moon, Y. Kim, C. Yang, Effect of NaOH Concentration on the PEO film formation of AZ31 magnesium alloy in the electrolyte containing carbonate and silicate ions, J. Kor. Inst. Surf. Eng., 50 (2017) 308-314. https://doi.org/10.5695/JKISE.2017.50.5.308
- D. Kwon, P. K. Song, S. Moon, Formation behavior and properties of PEO Films on AZ91 Mg alloy in 0.1 M NaOH + 0.05 M NaF solution containing various Na2SiO3, J. Kor. Inst. Surf. Eng., 53 (2020) 59-66. https://doi.org/10.5695/JKISE.2020.53.2.59
- S. Moon, J. Kim, Effect of Na3PO4 Concentration on the formation behavior of PEO films on AZ31 Mg alloy, J. Kor. Inst. Surf. Eng., 52 (2019) 265-274. https://doi.org/10.5695/JKISE.2019.52.5.265
- S. Moon, Y. Kim, Anodic oxidation behavior of AZ31 magnesium alloy in aqueous electrolyte containing various Na2CO3 concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 331-338. https://doi.org/10.5695/JKISE.2016.49.4.331
- S. Moon, D. Kwon, Anodic oxide films formed on AZ3 magnesium alloy by plasma electrolytic oxidation method in electrolytes containing various NaF concentrations, J. Kor. Inst. Surf. Eng., 49 (2016) 225-230. https://doi.org/10.5695/JKISE.2016.49.3.225
- D. Kwon, S. Moon, Effects of NaOH concentration on the structure of PEO films formed on AZ31 Mg alloy in PO43- and SiO32- containing aqueous solution, J. Kor. Inst. Surf. Eng., 49 (2016) 46-53. https://doi.org/10.5695/JKISE.2016.49.1.46
- S. Moon, C. Yang, S. Na, Effects of hydroxide and silicate ions on the plasma electrolytic oxidation of AZ31 Mg alloy AZ31, J. Kor. Inst. Surf. Eng., 47 (2014) 147-154. https://doi.org/10.5695/JKISE.2014.47.4.147
- S. Moon, A blade-abrading method for preparation of fresh surface of Mg, J. Kor. Inst. Surf. Eng., 48 (2015) 194-198. https://doi.org/10.5695/JKISE.2015.48.5.194