DOI QR코드

DOI QR Code

초등학생의 실험매뉴얼 처리에서 나타나는 휴리스틱

Heuristic Appearing in Experimental Manual Processing of Elementary School Students

  • 투고 : 2022.06.26
  • 심사 : 2022.08.17
  • 발행 : 2022.08.30

초록

휴리스틱은 불확실하거나 시간과 정보가 충분하지 않을 때 신속하게 사용하는 경험적 방법이다. 본 연구는 초등학생들의 과학실험활동 중 실험매뉴얼 처리에서 나타나는 휴리스틱이 무엇인지 알아보는 것이 목적이다. 이를 위해 초등학교 5학년 학생 20명(여 10, 남 10)을 연구 참여자로 과학 실험활동을 수행하게 하여 실험행동자료과 시선이동자료를 수집하였고, 회고적 인터뷰를 실시하였다. 수집한 자료에서 휴리스틱에 의한 행동을 추출하고 귀납적으로 개념화 하였다. 연구결과, 실험매뉴얼 처리에서 나타나는 휴리스틱은 "목표상태와 현재상태의 차이 줄이기", "실험 절차를 짐작하기", "기대되는 결과에 주의하기", "실험매뉴얼 사진과 비교하기", "시행착오 전략 사용하기"의 5가지였으며, 각 개념에 따라 실험활동에 유리한 측면과 불리한 측면이 나타났다. 학생들이 처음 경험하게 되는 과학실험활동에서는 정보가 부족하고 상황이 불확실하므로 휴리스틱에 의한 행동이 본성적으로 나타난다. 이에 교육자들은 학생들의 휴리스틱에 대해 이해하고 과학실험활동을 지도할 필요가 있다.

Heuristic is a empirical method that is used quickly when uncertainty or insufficient time and information are insufficient. The purpose of this study is to find out what heuristics appear in the processing of the experimental manual among science experiment activities of elementary school students. To do this, 20 fifth-grade elementary school students (female 10 and male 10) were required to conduct scientific experimental activities as research participants to collect experimental behavior data and gaze movement data, and retrospective interviews were conducted. The collected data extracted and conceptualized behavior by heuristics. As a result of the study, there were five heuristics that appeared in the processing of the experimental manual: "reducing the difference between the target state and the current state," "guessing the experimental procedure," "paying attention to the expected results," "comparing with the picture of the experimental manual," and "using a trial and error strategy." According to each concept of heuristics, there were favorable and unfavorable aspects for experimental activities. In science experiment activities that students experience for the first time, there is a lack of information and the situation is uncertain, so behavior by heuristics appears in nature. Therefore, educators need to understand students' heuristics and guide scientific experimental activities.

키워드

과제정보

본 논문은 2018년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2018S1A5B5A02034210).

참고문헌

  1. 김성운(2021). 과학 실험 활동 중 도구와의 상호작용에서 나타나는 도구 어포던스: 전자석 만들기를 중심으로. Brain, Digital, & Learning, 11(1), 131-148.
  2. 김천웅, 정정인(2019). 영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석. 초등과학교육, 38(1), 73-86.
  3. 노태희, 김민영, 최숙영, 강석진(2008). 과학 실험 보고서를 이용한 불일치 사례에 대한 학생들의 반응 분석. 한국과학교육학회지, 28(6), 633-640.
  4. 양일호, 김석민, 조현준(2007). 초.중등학교 과학 실험수업의 유형 분석. 한국교육과학회지, 27(3), 235-241.
  5. 임청환, 임귀숙(2011). 초등 과학 영재의 과학 문제 해결과정 분석. 초등과학교육, 30(2), 213-231.
  6. 조헌국, 송진웅(2011). 불일치 상황에서 나타나는 초등학생들의 관찰 유형과 학습자의 과학의 관점이 관찰 활동에 미치는 효과 분석. 초등과학교육, 30(4), 405-414.
  7. Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945-1969. https://doi.org/10.1080/09500690701749305
  8. Baker, L. M., & Dunbar, K. (2000). Experimental design heuristics for scientific discovery: The use of "baseline" and "known standard" controls. International Journal of Human-Computer Studies, 53(3), 335-349. https://doi.org/10.1006/ijhc.2000.0393
  9. Bujak, K. R. (2014). Transitional embedded instructions for manipulating physical objects. Doctoral dissertation, Georgia Institute of Technology.
  10. Dunbar, K. (1997). How scientists think: Online creativity and conceptual change in science. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 461-493). Washington, DC: American Psychological Association Press.
  11. Dunbar, K. (1999). The scientist in vivo: How scientists think and reason in the laboratory. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 89-98). New York: Plenum.
  12. Fonteyn, M. E., Kuipers, B., & Grobe, S. J. (1993). A description of think aloud method and protocol analysis. Qualitative Health Research, 3(4), 430-441. https://doi.org/10.1177/104973239300300403
  13. Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 3(1), 20-29. https://doi.org/10.1111/j.1745-6916.2008.00058.x
  14. Graulich, N., Hopf, H., & Schreiner, P. R. (2010). Heuristic thinking makes a chemistsmart. Chemical Society Reviews, 39(5), 1503-1512. https://doi.org/10.1039/B911536F
  15. Gunstone, R. F., & Champagne, A. B. (1990). Promoting conceptual change in the laboratory. In E. Hegarty-Hazel (Ed.), The student laboratory and the science curriculum (pp. 159-182). London: Routledge.
  16. Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142. https://doi.org/10.1080/03057269308560022
  17. Hogstrom, P., Ottander, C., & Benckert, S. (2010). Lab work and learning in secondary school chemistry: The importance of teacher and student interaction. Research in Science Education, 40(4), 505-523. https://doi.org/10.1007/s11165-009-9131-3
  18. Johnstone, A. H. (1997). Chemistry teaching-science or alchemy? Journal of Chemical Education, 74(3), 262-268. https://doi.org/10.1021/ed074p262
  19. Kahneman, D., Slovic, S. P., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  20. Kane, J. E., & Webster, G. D. (2013). Heuristics and biases that help and hinder scientists: Toward a psychology of scientific judgment and decision making. In G. J. Feist, & M. E. Goreman (Eds.), Handbook of the psychology of science (pp. 437-465). New York: Springer.
  21. Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12(1), 1-48. https://doi.org/10.1207/s15516709cog1201_1
  22. Klahr, D., Fay, A. L., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25(1), 111-146. https://doi.org/10.1006/cogp.1993.1003
  23. Knoblich, G., Ollinger, M., & Spivey, M. J. (2005). Tracking the eye to obtain insight into insight problem solving. In G. Underwood (Ed.), Cognitive processes in eye guidance (pp. 355-375). Great Britain: Oxford University Press.
  24. Kools, M., Van de Wiel, M. W., Ruiter, R. A., & Kok, G. (2006). Pictures and text in instructions for medical devices: Effects on recall and actual performance. Patient Education and Counseling, 64(1-3), 104-111. https://doi.org/10.1016/j.pec.2005.12.003
  25. Lehman, J. R. (1990). Students' verbal interactions during chemistry laboratories. School Science and Mathematics, 90(2), 142-150. https://doi.org/10.1111/j.1949-8594.1990.tb12006.x
  26. Millar, R. (2004). The role of practical work in the teaching and learning of science. Paper Prepared for the Committee: High School Science Laboratories: Role and Vision, National Academy of Sciences, Washington DC: University of York.
  27. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
  28. Osborne, J. (1993). Alternatives to practical work. School Science Review, 75(271), 117-123.
  29. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124