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AUTHOR'S SUMMARY

Effective ablation approach for persistent atrial fibrillation (PeAF) beyond pulmonary vein 
(PV) isolation is still controversial. We developed a real-time computational AF modeling 
technique to perform rapid rotor mapping reflecting the individual electrophysiology and 
AF mechanisms. In this study, we investigated whether extra-PV ablation targeting a high 
maximal slope of the action potential duration restitution curve (Smax) improves the 
outcome of PeAF ablation. However, virtual ablation-guided Smax modulation approach for 
PeAF did not result in an improved procedural outcome compared to the empirical ablation 
strategy. Further investigation is needed regarding a more effective patient-customized 
mechanism-based AF catheter ablation using the functional electrophysiology.

ABSTRACT

Background and Objectives: We investigated whether extra-pulmonary vein (PV) ablation 
targeting a high maximal slope of the action potential duration restitution curve (Smax) 
improves the rhythm outcome of persistent atrial fibrillation (PeAF) ablation.
Methods: In this open-label, multi-center, randomized, and controlled trial, 178 PeAF 
patients were randomized with 1:1 ratio to computational modeling-guided virtual Smax 
ablation (V-Smax) or empirical ablation (E-ABL) groups. Smax maps were generated by 
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computational modeling based on atrial substrate maps acquired during clinical procedures 
in sinus rhythm. Smax maps were generated during the clinical PV isolation (PVI). The 
V-Smax group underwent an additional extra-PV ablation after PVI targeting the virtual high 
Smax sites.
Results: After a mean follow-up period of 12.3±5.2 months, the clinical recurrence rates 
(25.6% vs. 23.9% in the V-Smax and the E-ABL group, p=0.880) or recurrence appearing as 
atrial tachycardia (11.1% vs. 5.7%, p=0.169) did not differ between the 2 groups. The post-
ablation cardioversion rate was higher in the V-Smax group than E-ABL group (14.4% vs. 
5.7%, p=0.027). Among antiarrhythmic drug-free patients (n=129), the AF freedom rate was 
78.7% in the V-Smax group and 80.9% in the E-ABL group (p=0.776). The total procedure 
time was longer in the V-Smax group (p=0.008), but no significant difference was found in 
the major complication rates (p=0.497) between the groups.
Conclusions: Unlike a dominant frequency ablation, the computational modeling-guided 
V-Smax ablation did not improve the rhythm outcome of the PeAF ablation and had a longer 
procedure time.

Trial Registration: ClinicalTrials.gov Identifier: NCT02558699

Keywords: Atrial fibrillation; Catheter ablation; Computer simulation; Action potential; 
Electrophysiology

INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia in the world with a higher prevalence 
in the aging society, and its clinical significance is increasing.1) AF catheter ablation (AFCA) 
is the most effective AF rhythm control therapy, which can reduce heart failure mortality, 
overall deaths or hospitalizations, and the risk of cerebral infarctions or dementia.2)3) 
However, AF is a chronic degenerative disease that exhibits a continuous progression and 
long-term recurrence even after a one-year successful outcome.4) Circumferential pulmonary 
vein isolation (PVI) is the most crucial and effective ablation target of AFCA.5) However, 
the efficacy of an empirical extra-PV ablation targeting an extra-PV substrate failed to be 
demonstrated in randomized clinical trials.6) AF rotor ablation using basket catheter mapping 
has a limitation in its low mapping resolution.7) Ablation of extra-PV triggers, which are the 
main mechanism of recurrence after a permanent circumferential PV isolation (CPVI), can 
improve the rhythm outcome, but the provocation, mapping, and ablation techniques for 
extra-PV triggers still have limitations.

Recently, on-site realistic human AF modeling that reflects the left atrial (LA) anatomy, 
histology, and electrophysiology is available during AFCA procedures with an improved 
computational power.8)9) Kim et al.8) and Baek et al.10) reported that a computational 
modeling-guided AF ablation improves the success rate of a persistent AF (PeAF) ablation 
as compared to an empirical ablation in the CUVIA-I (118 patients) and II (170 patients) 
randomized clinical trials. The CUVIA-AF II trial demonstrated an improved PeAF ablation 
outcome by a computational modeling-guided virtual dominant frequency (DF) ablation.10) 
While the DF reflects the high-frequency rotational reentries, a high maximal slope of 
action potential duration (APD) restitution curve (Smax) indicates a vulnerability to AF 
wave-brake. The APD restitution is associated with the dynamic heterogeneity of the 
APD.11)12) Thus, a large change in APD with a high Smax makes a circumstance in which 
a continuous wave-break can be easily sustained.13)14) In the APD restitution curve, the 
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preceding diastolic interval (DI) determines the following APD.13)14) A steep (>1) slope of 
the APD restitution curve means that a small change of the DI causes a large change in the 
APD. These large APD oscillations make a difference in the refractoriness between adjacent 
cardiomyocytes, resulting in a local partial conduction block and sustained wave-break from 
the reentrant wavefront.13)14) In this study, we aimed to evaluate the effects of a local extra-PV 
ablation targeting the high Smax in addition to the CPVI. However, the Smax is a cellular 
electrophysiology index that is clinically challenging to measure, so we localized the Smax by 
analyzing the clinical voltage map-integrated AF computational modeling.14)15) We designed 
this multi-center prospective randomized clinical trial by collaboration between the clinical 
ablation team and simulation team in real-time.

In this multi-center randomized clinical trial, the operator acquired an atrial substrate 
map, sent the data to the modeling team, and received the outcome of the virtual Smax 
calculated during the CPVI procedure. We compared the rhythm outcomes of the real-time 
computational modeling–guided extra-PV Smax ablation and empirical AFCA in patients 
with non-paroxysmal AF.

METHODS

Ethical statement
The Clinical Usefulness of Virtual Ablation Guided Catheter Ablation of Atrial Fibrillation 
Targeting Restitution Parameter-Guided Catheter Ablation (CUVIA-REGAB) was a multi-
center, prospective, single-blind randomized controlled trial including non-valvular AF 
patients who were scheduled for AFCA (ClinicalTrials.gov number NCT02558699). The study 
protocol was approved by the Institutional Review Board of each participating center (The 
Severance Clinical Research Center, IRB No.: 4-2015-0646) and complied with the principles 
of the 2013 Declaration of Helsinki. All participants provided written informed consent 
before the study enrollment. The trial enrollment began in March 2019.

Study population
Patients were eligible if they were i) aged 19–80 years and ii) had documented AF despite 
more than 6 weeks of antiarrhythmic drug (AAD) treatment or documented AF with 
intolerance to AADs. The major exclusion criteria were an estimated glomerular filtration 
rate <30 mL/min, contraindication to anticoagulants, cardiac structural abnormalities 
that were not suitable to a catheter-based AF ablation procedure, history of major bleeding 
complications, history of a recurrent ischemic stroke, prior AFCA or Maze surgery, or any 
other conditions that impeded a cardiac computed tomography (CT) scan.

Group assignment and ablation protocol
The included patients were randomly assigned to either the virtual Smax simulation (V-Smax) 
group or empirical ablation (E-ABL) group in a 1:1 ratio. Randomization was performed 
by a central randomization service independent of the investigators. All patients received 
anticoagulation before the AFCA for at least 3 weeks. The AADs were discontinued for at least 
5 half-lives prior to the procedure. A cardiac CT scan was performed before the procedure and 
the absence of any LA appendage thrombus was confirmed. During the ablation procedure, a 
circular mapping catheter and ablation catheter were advanced into the LA via a transseptal 
access. Three-dimensional (3D) electroanatomic mapping of the LA was performed in both 
groups using either an Ensite Navx (Abbott, St. Paul, MN, USA) or CARTO (Biosense Webster, 
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Diamond Bar, CA, USA) system. In patients with ongoing AF at the beginning of AFCA 
procedure, intracardiac electrical cardioversion was performed and electroanatomic mapping 
was conducted during sinus rhythm or regular atrial pacing. If the cardioversion failed or 
AF recurred during the substrate mapping, a repeated cardioversion was attempted up to 
3 times. If AF recurred before the completion of the substrate mapping despite electrical 
cardioversion, the patient was excluded from the analysis. A CPVI was conducted first in both 
groups, and the V-Smax group received additional ablation guided by the virtual Smax map 
(Figure 1). In patients in whom AF remained after the completion of the recommended high 
Smax site ablation, electrical cardioversion was conducted and the procedure was finished 
after sinus conversion. In the E-ABL group, further extra-PV ablation was conducted at the 
operator’s discretion. The ablation procedure was performed using radiofrequency energy 
with an open irrigated catheter with a power of up to 40W. In both groups, ablation of the 
cavo-tricuspid isthmus line was performed at each operator’s discretion.

Computer simulation procedure for an on-site clinical application
The study process in the V-Smax group is shown in Figure 1. At the beginning of the 
computational modeling procedure, an on-site procedure team acquired the clinical 
electroanatomical map (voltage map and local activation time [LAT] map) and sent the 
spatiotemporal data to the core laboratory after integration of the patient’s heart CT imaging. 
The core laboratory team conducted the simulation study using the patient data obtained 
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Figure 1. Study process in the V-Smax group. 
ABL = ablation; AF = atrial fibrillation; CT = computed tomography; LAT = local activation time; PVI = pulmonary 
vein isolation; 3D = 3-dimensional.
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from the procedure team while the on-site operators started the CPVI. Merging of the LAT 
and voltage maps with the CT images were performed by 4 steps: geometry, trimming, 
field scaling, and alignment.16) The clinical electroanatomical map merged with CT was 
created to obtain the clinical LAT and voltage maps. We acquired the clinical voltage map 
that was recorded on the LA during sinus rhythm or regular atrial pacing based on bipolar 
electrograms. We merged the 3D LA modeling results with CT images of the patient’s heart 
and then adjusted them with the clinical map.

3D computational modeling of AF and virtual Smax mapping
The detailed description of the 3D computational modeling is provided in the supplemental 
methods. The LA geometries were reconstructed from the 3D CT digital images and 
communication in medicine files.9) The virtual LAT and voltage map of the LA were generated 
and synchronized with the clinical maps using the CUVIA software (Model: SH01; Laonmed 
Inc., Seoul, Korea). To determine the Smax for each node, the APD of 90% (APD90) and 
DI were measured during ramp pacing for the duration from the start of the pacing to 3 
beats after AF induction. Then the APD restitution curve was determined by employing the 
relationship between the APD90 and DI, and the Smax was calculated via the maximal slope 
of the restitution curve, defined at each node of the LA model. The generated Smax map 
was transmitted to the on-site procedure team for the V-Smax ablation. The region with the 
highest 10% Smax value was provided by a color-coded Smax map which was normalized 
between the minimum and maximum V-Smax values of overall nodes for each patient in the 
V-Smax group. Mean Smax value was 1.00±0.33. We ablated the highest 10% Smax area to 
minimize the critical mass reduction effects.

Follow up and outcome analysis
The primary study endpoint was a freedom from any atrial tachyarrhythmia recurrence for 
12 months. The secondary study endpoints were periprocedural mortality, major bleeding, 
thromboembolic complications, then procedure time, and total ablation time. Major 
bleeding was defined as a cardiac tamponade requiring intervention or bleeding events 
that required a transfusion or resulted in more than a 4 g/dL decrease in the hemoglobin. 
Post-procedural AADs were used at each operator’s discretion for 3 months after the AFCA, 
then the AADs were discontinued when there was no recurrent AF. Patients were routinely 
scheduled to visit our outpatient clinic at 1, 3, 6, and 12 months after the AFCA and every 
6 months thereafter. A 12-lead electrocardiogram (ECG) was recorded on every visit, and 
24-hour Holter monitoring was performed at 3, 6, and 12 months. After a 3-month blanking 
period, any AF or atrial tachycardia (AT) recorded on the 12-lead ECG or lasting for more 
than 30 seconds on the Holter testing was considered a recurrence. All clinical outcomes of 
interest were confirmed and adjudicated by the central clinical events committee.

Statistical analysis
The sample size was estimated from the recurrence rate derived from the CUVIA-I trial.8) The 
AF recurrence rates were presumed to be 20% in the Smax simulation group and 40% in the 
empirical ablation group. An overall sample size of more than 172 was expected to have an 
80% power to detect a statistical difference between the 2 groups at a 2-sided alpha of 0.05. 
For the baseline characteristics, the continuous variables are presented as the mean±standard 
deviation and were compared using Student’s t-tests. Categorical variables are presented 
as frequencies with percentages (%) and were compared by the χ2 test or Fisher’s exact test. 
The cumulative incidence of the primary outcome was estimated by Kaplan-Meier survival 
curves and compared with the log-rank test. In the overall population, a multivariate Cox 
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proportional hazard regression analysis was used to adjust the risk of the outcome of interest 
and to identify independent predictors. All variables with p values <0.2 in the univariate 
Cox regression analysis and other non-significant variables with a proven importance to 
predict AF recurrence were included in a multivariate Cox proportional hazards regression 
model. For all 2-tailed comparison, p values <0.05 were considered to indicate statistical 
significance. All the statistical analyses were performed using SPSS version 25.0 software 
(SPSS Inc., Chicago, IL, USA).

RESULTS

Baseline characteristics
Among a total of 196 patients with AAD-resistant symptomatic PeAF undergoing catheter 
ablation, 18 (9.2%) were excluded due to a failed internal cardioversion or 3 episodes of 
recurrent AF re-initiated during paced atrial substrate mapping, which provided the mandatory 
electrophysiologic data for our realistic computation modeling (Figure 2). A total of 178 
patients were included in the study, including 90 allocated to the V-Smax group and 88 to 
the E-ABL group. The mean age was 62.2±9.9 years and 131 (73.6%) were male (Table 1). The 
median AF duration was 31 (15–66) months and the mean CHA2DS2-Vasc score was 2.2±1.3. 
The mean LA dimension (antero-posterior diameter) was 43.0±6.1 mm, and the left ventricular 
ejection fraction was 56.6±8.7%. Both groups were well-balanced, and there was no significant 
difference in the baseline characteristics between the 2 groups.

https://doi.org/10.4070/kcj.2022.0113
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of recurrent AF re-initiated during paced
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Figure 2. Study enrollment. Included patients were randomly assigned to receive virtual rotor guided ablation or 
empirical ablation therapy. 
AF = atrial fibrillation; AFCA = atrial fibrillation catheter ablation; E-ABL = empirical ablation; PVI = pulmonary 
vein isolation; V-Smax = virtual high maximal slope of the action potential duration restitution curve simulation.
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Procedural characteristics
The CPVI was completed in all patients and additional cavo-tricuspid isthmus ablation was 
performed in 159 (89.3%) patients (Table 2). The mean Smax values were 1.04±0.32 in the 
V-Smax group and 0.96±0.34 in the E-ABL group (p=0.108). The Smax for the E-ABL was 
calculated by a post hoc analysis. The high Smax area was located within the low voltage 
area in 93.5% of the patients and corresponded to the slow conduction zone in 72.3% of the 
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Table 1. Baseline clinical characteristics
Characteristics Overall (n=178) V-Smax (n=90) E-ABL (n=88) p value
Age, years 62.2±9.9 62.9±9.6 61.3±10.1 0.279
Male 131 (73.6) 66 (73.3) 65 (73.9) 0.936
AF duration (months; n=169) 49.5±47.6 48.9±45.6 50.0±49.9 0.878

AF duration, median (IQR) 31 (15–66) 30 (12–72) 34 (17–64) -
Comorbidities

Heart failure 47 (26.4) 28 (31.1) 19 (21.6) 0.150
Hypertension 128 (71.9) 67 (74.4) 61 (69.3) 0.447
Diabetes mellitus 40 (22.5) 24 (26.7) 16 (18.2) 0.175
Stroke 9 (5.1) 4 (4.4) 5 (5.7) 0.745
Vascular disease 14 (7.9) 9 (10.0) 5 (5.7) 0.285
CHA2DS2-VASc score 2.2±1.3 2.3±1.4 2.1±1.3 0.221

Echocardiographic parameters
LA dimension (mm; n=172) 43.0±6.1 43.4±6.1 42.6±6.1 0.376
LA volume index (mL/m2; n=114) 40.1±16.7 41.6±16.5 38.6±16.8 0.331
LV ejection fraction (%; n=178) 56.6±8.7 56.2± 8.7 57.0±8.7 0.514
E/Em (n=160) 9.4±3.3 9.5±3.3 9.2±3.4 0.529
LVEDD (mm; n=178) 48.7±5.6 48.8±5.7 48.7±5.4 0.839
LVMI (n=168) 97.7±28.6 97.3±27.8 98.2±29.6 0.838

Smax value (n=147) 1.00±0.33 1.04±0.32 0.96±0.34 0.108
Values are presented as mean±standard deviation or number (%).
AF = atrial fibrillation; E-ABL = empirical ablation; E/Em = mitral inflow velocity/mitral annulus tissue velocity; IQR = interquartile range; LA = left atrial; LV = left 
ventricle; LVEDD = left ventricle end-diastolic diameter; LVMI = left ventricle mass index; PeAF = persistent atrial fibrillation; Smax = high maximal slope of the 
action potential duration restitution curve; V-Smax = virtual Smax simulation.

Table 2. Procedure related characteristics
Characteristics Overall (n=178) V-Smax (n=90) E-ABL (n=88) p value
Procedure time (minutes; n=174) 194.6±52.3 205.2±56.5 184.2±45.8 0.008
Ablation time (seconds; n=168) 3,353.4±1,228.3 3,610.7±1,334.6 3,083.6±1,047.7 0.005
Ablation lesions (%)

CPVI 178 (100) 90 (100) 88 (100) -
CTI 159 (89.3) 81 (90.0) 78 (88.6) 0.768
Smax ablations

Roof 33 (36.7)
Anterior wall 37 (41.1)
Septum 37 (41.1)
Posterior inferior wall 26 (28.9)
Left lateral isthmus area 21 (23.3)

Linear Ablations (%, BDB rates)
Roof line 21 (23.9, 66.7)
Posterior box ablation 7 (8.0, 71.4)
Anterior line 16 (18.2, 75.0)
Septal line 5 (5.7, 0)
CFAE ablation 15 (17.0, 0)

Complications 13 (7.3) 6 (6.7) 3 (3.4) 0.498
Tamponade 6 4 2 -
Pneumonia 1 0 1 -
Sick sinus syndrome 1 1 0 -
Tachy brady syndrome 1 1 0 -

BDB = bidirectional block; CFAE = complex fractionated atrial electrogram; CPVI = circumferential pulmonary vein isolation; CTI = cavotricuspid isthmus; E-ABL = 
empirical ablation; V-Smax = virtual high maximal slope of the action potential duration restitution curve simulation.
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patients. Among the total of 522 high Smax sites, 58.2% were in the areas of disorganized 
fiber orientation (septum, appendage base, roof of coronary sinus, or PV antrum). In the 
V-Smax group, additional extra-PV ablation targeting Smax sites was conducted on the roof 
area (36.7%), anterior wall (41.1%), antero-septum (41.1%), posterior wall (28.9%), and left 
lateral isthmus area (23.3%), respectively (Table 2, Supplementary Figure 1). In the E-ABL 
group, extra-PV ablation was conducted for roof line in 23.9%, anterior line in 18.2%, septal 
line in 5.7%, and posterior box in 8.0% of patients. The bidirectional block rates of the 
linear ablation were 66.7%, 75.0%, and 71.4% for the roof line, anterior line, and posterior 
box isolation, respectively. The total procedure time was significantly longer in the V-Smax 
group than E-ABL group (p=0.008). The major complication rates did not significantly differ 
between the 2 groups (p=0.498, Table 2). There were 4 cases of intraprocedural cardiac 
tamponade requiring emergent pericardiocentesis in the V-Smax group. Three of them were 
developed during CPVI, and the other one was developed during cavo-tricuspid isthmus 
ablation performed for previously documented atrial flutter. None of the cardiac tamponades 
were associated with virtual high Smax sites ablation, and all patients were fully recovered.

Procedure outcomes
The mean follow-up duration was 12.3± 5.2 months. After the AFCA, AADs were prescribed 
in 49 patients (27.5%) after 3 months and 84 (47.2%) patients at the final follow-up, without 
a significant difference between the 2 groups (Table 3). Recurrence of atrial arrhythmias 
after the blanking period was observed in 23 (25.6%) patients in the V-Smax group and 21 
(23.9%) in the empirical ablation group (log rank, p=0.880) (Figure 3A). According to the 
mode of recurrence, AT recurrences among the overall clinical recurrences were 43.5% in 
the V-Smax group and 23.8% in the E-ABL group (p=0.169, Table 3). However, the post-
AFCA cardioversion rate was significantly higher in the V-Smax group (14.4%) than E-ABL 
group (5.7%, p=0.027). In patients who were not prescribed any AAD after 3 months, the AF 
freedom rate was 52/66 (78.7%) in the V-Smax group and 51/63 (80.9%) in the E-ABL group 
(p=0.776, Figure 3B). In the multivariate analysis, only AF duration and LA volume index were 
independent predictors for a clinical recurrence (Table 4). The computational modeling-
guided Smax ablation was not associated with higher AF freedom. In a sub-group analysis 
according to the global average of Smax value, the rhythm outcome did not differ between the 
patients with an Smax ≥1.0 and those with an Smax <1.0 in either the V-Smax group (Log-
rank p=0.796) or E-ABL group (p=0.504) (Figure 4A and B). Examples of Smax maps that 
represent patients with high (≥1) and low (<1) Smax values are shown in Figure 4C and D.
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Table 3. Clinical rhythm outcomes
Characteristics Overall (n=178) V-Smax (n=90) E-ABL (n=88) p value
Follow-up duration (months) 12.3±5.2 12.3±5.1 12.2±5.4 0.848
Post-ABL medication

ACEi or ARB 103 (58.5) 59 (66.3) 44 (50.6) 0.034
Beta blocker 78 (44.3) 39 (43.8) 39 (44.8) 0.893
Statin 83 (47.2) 45 (50.6) 38 (43.7) 0.360

AAD use
AADs at discharge 99 (55.6) 50 (55.6) 49 (55.7) 0.986
AADs after 3 months 49 (27.5) 24 (26.7) 25 (28.4) 0.795
AADs at the final follow-up 84 (47.2) 47 (52.2) 37 (42.0) 0.174

Early recurrence 41 (23.0) 24 (26.7) 17 (19.3) 0.244
Clinical recurrence 44 (24.7) 23 (25.6) 21 (23.9) 0.794

Recurrence as AT, n (% in recur/% overall) 15 (34.1) 10 (43.5/11.1) 5 (23.8/5.7) 0.169
Cardioversion, n (% in recur/% overall) 18 (40.9/10.1) 13 (56.5/14.4) 5 (23.8/5.7) 0.027

AAD = antiarrhythmic drug; ABL = ablation; ACEi = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; AT = atrial tachycardia; E-ABL = 
empirical ablation; V-Smax = virtual high maximal slope of the action potential duration restitution curve simulation.
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DISCUSSION

This multicenter prospective randomized clinical trial evaluated the efficacy of the on-site 
computational modeling-guided Smax ablation approach in patients with PeAF. Unlike a DF 
ablation, the V-Smax ablation in addition to the CPVI did not improve the procedure outcomes 
as compared to an empirical PeAF ablation and rather increased the total procedure time. The 
on-site application of the realistic computational modeling of AF, which reflects a personalized 
atrial anatomy, electrophysiology, fibrosis, and fiber orientation, is feasible, but the Smax may 
not be an appropriate extra-PV ablation target in patients with non-paroxysmal AF.
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Figure 3. Freedom from AF recurrence in the 2 groups. (A) AF freedom in overall patients. (B) AF freedom in AAD-free patients at 3 months after AFCA. 
AAD = antiarrhythmic drug; AF = atrial fibrillation; AFCA = atrial fibrillation catheter ablation; E-ABL = empirical ablation; V-Smax = virtual high maximal slope of 
the action potential duration restitution curve simulation.

Table 4. Cox regression analysis for clinical recurrence

Characteristics
Univariate Multivariate*

HR (95% CI) p value HR (95% CI) p value
Age (years) 1.00 (0.97–1.03) 0.745 0.99 (0.94–1.04) 0.649
Male 0.52 (0.28–0.94) 0.031 0.73 (0.30–1.77) 0.486
AF duration 1.01 (1.00–1.01) 0.070 1.01 (1.00–1.02) 0.003
Comorbidities

Heart failure 0.76 (0.38–1.54) 0.446 0.66 (0.22–1.95) 0.449
Hypertension 0.77 (0.41–1.44) 0.408
Diabetes mellitus 0.90 (0.43–1.87) 0.780
Stroke 1.64 (0.58–4.58) 0.349
Vascular disease 0.76 (0.24–2.47) 0.651

CHA2DS2-VASc score 1.01 (0.81–1.26) 0.954
Echocardiographic parameters

LA dimension (mm) 1.04 (0.99–1.10) 0.134
LA volume index (mL/m2) 1.02 (1.00–1.04) 0.045 1.02 (1.00–1.05) 0.047
LV ejection fraction (%) 1.04 (0.99–1.08) 0.111
E/Em 1.04 (0.95–1.13) 0.442
LVEDD (mm) 0.96 (0.90–1.02) 0.163
LVMI (g/m2) 1.00 (0.98–1.01) 0.443

Smax simulation 1.05 (0.58–1.89) 0.881 1.38 (0.62–3.06) 0.421
AF = atrial fibrillation; CI = confidence interval; E/Em = mitral inflow velocity/mitral annulus tissue velocity; HR = hazard ratio; LA = left atrial; LV = left ventricle; 
LVEDD = left ventricle end-diastolic diameter; LVMI = left ventricle mass index.
*Among the variables with p values <0.2 in univariate analyses, LA dimension, LV ejection fraction, and LVEDD were excluded in the multivariate analysis to avoid 
multicollinearity.
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It has already been confirmed that the CPVI is the most effective target for AFCA, but little 
is known about its proper extra-PV targets. In the case of non-paroxysmal AF with advanced 
atrial remodeling, the amount and location of a substrate change varies from patient to 
patient. Because of these personalized characteristics, all randomized clinical trials that tested 
for a uniform empirical additional extra-PV ablation beyond the CPVI failed to demonstrate 
their efficacy.4)6) Since then, a late gadolinium enhancement (LGE) on magnetic resonance 
imaging (MRI), low voltage area mapping, or catheter mapping of AF drivers by a multi-
electrode catheter have been attempted to apply tailored approaches that reflect the patient 
characteristics.17) However, in the case of an MRI-LGE or low voltage area ablation, the 
electrophysiological properties of AF were not reflected.18) Roving multi-electrode catheter AF 
mapping has a limitation in that it is not a synchronized entire chamber AF map, and focal 
impulse and rotor mapping have a limitation of the low spatial resolution of the basket catheter.

To overcome these problems, we devised a computational modeling-guided AF map.8)9) 
We tried to find the proper ablation target in the induced virtual AF after integrating the 
CT-based anatomical information, personalized atrial voltage, and activation information 
acquired at the beginning of the AFCA procedure into the human AF modeling.16) Since 
the CUVIA AF modeling is an entire chamber map including the histological information 
such as fibrosis and the myocardial fiber orientation, it is possible to determine the precise 
extra-PV ablation target with AF wave dynamics parameters together at more than 400,000 
sophisticated nodes.9) The virtual AF map analyzed with the mapping data acquired at the 
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Figure 4. Subgroup analysis according to the Smax level. (A) Freedom from AF in patients with Smax <1 and Smax ≥1 in the V-Smax group. (B) Freedom from AF in 
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AF = atrial fibrillation; E-ABL = empirical ablation; V-Smax = virtual high maximal slope of the action potential duration restitution curve simulation.
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beginning of the procedure can be calculated within about 30–40 minutes of the operator 
performing CPVI, enabling on-site simulation tests.10) In this study, the Smax, an index 
representing the AF wave break vulnerability, was extracted by computational modeling and 
applied to clinical procedures.19)

In general, the Smax is an indicator of the wave break vulnerability, and the DF represents 
a focal source or focal driver in AF maintenance mechanisms.15) In the CUVIA AF II study, 
extra-PV DF ablation improved the rhythm outcome of the PeAF ablation,10) but the V-Smax 
ablation did not affect the ablation outcome in this study. However, it is difficult to assert that 
the focal source mechanism is the primary mechanism of the AF maintenance rather than a 
continuous wave break. That is because the degree of meandering of the AF driver changes 
according to the cellular and tissue electrophysiological conditions of the atrium, and the 2 
mechanisms are interchangeable.20) Hwang et al.21) reported an inverse relationship between 
the Smax and DF, and Park et al. 22) reported that a DF ablation improved the rhythm outcome 
only in the low Smax patient group in the CUVIA AF2 post hoc analyses. In other words, it 
means that there is an interaction between the Smax and DF. However, unlike the localized 
DF sites, the distribution of the Smax was very heterogeneous, making it difficult to target, 
and it prolonged the procedure time. The V-Smax group had a prolonged procedure time 
owing to a diffuse ablation time.

It has been 25 years since the procedure called AFCA first started, and the outcome is 
improving, but it still has a significant long-term recurrence rate.4) Various empirical, 
histology-based, and rotor tracing extra-PV ablation methods have been tried to reduce the 
postoperative recurrence in PeAF patients, but none of them have been sufficient to improve 
the rhythm outcome.4)6) Therefore, it can be expected that the AFCA results will be improved 
by additionally reflecting the personalized electrophysiologic character of AF. Recently, by 
utilizing computational modeling, it has become possible to perform procedures considering 
the electrophysiology and AF mechanisms, as well as the anatomy and histology. Hwang et 
al.21) compared and evaluated the virtual ablation of the DF, phase singularity, Shannon’s 
entropy, and complex fractionated atrial electrograms, and showed that the DF ablation had 
the most effective anti-AF effects, which were also shown in clinical studies.10) In this study, 
the effect of the Smax ablation reflecting the dynamic heterogeneity of the refractoriness was 
clinically evaluated. The Smax ablation had an AF defragmentation effect but did not improve 
the clinical rhythm outcomes. In the future, a more effective patient-customized mechanism-
based AFCA using the functional electrophysiology will improve the sophisticated AF 
mapping and procedural outcomes.

There are several limitations to our study. First, there was no constant protocol for the 
empirical ablation strategy. There might have been a significant between-center difference in 
the ablation protocol and procedural outcomes in the E-ABL group. The Smax ablation was 
performed based on the anatomic area recommended by the computation model, which was 
not precisely matched in the 3-dimensional electroanatomic maps. The use of AADs after 
the AFCA was not strictly regulated without any statistical differences between the groups. 
Because we performed cardioversion to acquire the substrate map, we could not evaluate the AF 
termination rate during the Smax ablation. Smax could depend on the computational model 
used. Electrotonic effects, caused by variations in the geometry and fibrosis, may affect Smax 
but may not be precisely reflected in this personalized modeling. We selected the ablation target 
by an empirical cutoff of highest 10% Smax area, which was chosen empirically. Although it is 
not demonstrated in our study, Smax ablation could be potentially proarrhythmic by providing 
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stable anchoring sites for reentrant drivers. The recurrence rate in the E-ABL group was lower 
(23.9%) than expected (40%) at study designation. Thus the study might not have been 
adequately powered to detect the efficacy of the virtual simulation guided ablation strategy.

In conclusion, in this multi-center prospective randomized trial, computational AF modeling 
and virtual ablation targeting a restitution parameter-guided Smax ablation in addition to the 
CPVI was not associated with an improved arrhythmia freedom expensing longer procedure 
time than an empirical ablation strategy in patients with PeAF.
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