DOI QR코드

DOI QR Code

A FIXED POINT THEOREM ON SOME MULTI-VALUED MAPS IN MODULAR SPACES

  • Fouad, Ouzine (Department of Mathematics, Faculty of Science, University Ibn Tofail) ;
  • Radouane, Azennar (Department of Mathematics, Faculty of Science, University Ibn Tofail) ;
  • Driss, Mentagui (Department of Mathematics, Faculty of Science, University Ibn Tofail)
  • Received : 2021.10.16
  • Accepted : 2022.04.10
  • Published : 2022.09.01

Abstract

Fixed point theory has been a flourishing area of mathematical research for decades, because of its many diverse applications. In this paper, we present a fixed point theorem for s - 𝜌-contractive type multi-valued mappings in modular spaces which will generalize some old results.

Keywords

References

  1. R. Azennar, S. BenTahar and D. Mentagui. Numerical Approximations For Fractional Equations In ℝ Via The New Method Of Fixed Point And Application, J. Interdisciplinary Math., 2021, DOI:10.1080/09720502.2021.1887606.
  2. R. Azennar and D. Mentagui, A solution for the minimax problem via fixed point theory in complete ordered locally convex spaces, Commu. Opti. Theory, 2020 (2020), Article ID 11.
  3. S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  4. M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12(1) (1961), 7-10.
  5. H. Iqbal, M. Abbas and S.H. Khan, ρ-attractive elements in modular function spaces, Kragujevac J. Math., 45(1) (2021), 47-61. https://doi.org/10.46793/KgJMat2101.047I
  6. A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for θ - φ-contraction on rectangular b-metric spaces, Abst. Appl. Anal., 2020, Article ID 8833214, 2020.
  7. M.A. Khamsi, W.M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-935. https://doi.org/10.1016/0362-546X(90)90111-S
  8. S.H. Khan, Approximating fixed points of (λ, ρ)-firmly nonexpansive mappings in modular function spaces, Arab. J. Math., 7 (2018), 281-287. https://doi.org/10.1007/s40065-018-0204-x
  9. W.M. Kozlowski, Modular function spaces, Dekker, New York/Basel, 1988.
  10. M.A. Kutbi and A. Latif, Fixed Points of Multivalued Maps in Modular Function Spaces, Fixed Point Theory Appl., 2009, Article ID 786357, 2009. https://doi.org/10.1155/2009/786357
  11. J, Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, 1983.
  12. S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  13. G.A. Okeke, S.A. Bishop and S.H. Khan, Iterative approximation of fixed point of multivalued ρ-quasi-nonexpansive mappings in modular function spaces with applications, J. Funct. Spaces, 2018, Article ID 1785702, 2018.
  14. G.A. Okeke and J.K. Kim, Approximation of common fixed point of three multi-valued ρ-quasi-nonexpansive mappings in modular function spaces, Nonlinear Funct. Anal. Appl., 24(4) (2019), 651-664.
  15. F. Ouzine, R. Azennar and D. Mentagui, Common Coupled Fixed Point Results For Multivalued Mappings In Ordered Banach Spaces, Dyna. Syst. Appl., 30(2) (2021), 237-250
  16. A.A. Taleb and E. Hanebaly, A Fixed Point Theorem And Its Application To Integral Equations In Modular Function Spaces, Proc. Amer. Math. Soc., 128(2) (1999), 419-426. https://doi.org/10.1090/S0002-9939-99-05546-X
  17. D. Wardowski, Fixed points of new type of contractive mappings in complete metric space Fixed Point Theory Appl., 2012:94 (2012). https://doi.org/10.1186/1687-1812-2012-94