References
- R. Azennar, S. BenTahar and D. Mentagui. Numerical Approximations For Fractional Equations In ℝ Via The New Method Of Fixed Point And Application, J. Interdisciplinary Math., 2021, DOI:10.1080/09720502.2021.1887606.
- R. Azennar and D. Mentagui, A solution for the minimax problem via fixed point theory in complete ordered locally convex spaces, Commu. Opti. Theory, 2020 (2020), Article ID 11.
- S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12(1) (1961), 7-10.
- H. Iqbal, M. Abbas and S.H. Khan, ρ-attractive elements in modular function spaces, Kragujevac J. Math., 45(1) (2021), 47-61. https://doi.org/10.46793/KgJMat2101.047I
- A. Kari, M. Rossafi, E. Marhrani and M. Aamri, New fixed point theorems for θ - φ-contraction on rectangular b-metric spaces, Abst. Appl. Anal., 2020, Article ID 8833214, 2020.
- M.A. Khamsi, W.M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-935. https://doi.org/10.1016/0362-546X(90)90111-S
- S.H. Khan, Approximating fixed points of (λ, ρ)-firmly nonexpansive mappings in modular function spaces, Arab. J. Math., 7 (2018), 281-287. https://doi.org/10.1007/s40065-018-0204-x
- W.M. Kozlowski, Modular function spaces, Dekker, New York/Basel, 1988.
- M.A. Kutbi and A. Latif, Fixed Points of Multivalued Maps in Modular Function Spaces, Fixed Point Theory Appl., 2009, Article ID 786357, 2009. https://doi.org/10.1155/2009/786357
- J, Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, 1983.
- S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
- G.A. Okeke, S.A. Bishop and S.H. Khan, Iterative approximation of fixed point of multivalued ρ-quasi-nonexpansive mappings in modular function spaces with applications, J. Funct. Spaces, 2018, Article ID 1785702, 2018.
- G.A. Okeke and J.K. Kim, Approximation of common fixed point of three multi-valued ρ-quasi-nonexpansive mappings in modular function spaces, Nonlinear Funct. Anal. Appl., 24(4) (2019), 651-664.
- F. Ouzine, R. Azennar and D. Mentagui, Common Coupled Fixed Point Results For Multivalued Mappings In Ordered Banach Spaces, Dyna. Syst. Appl., 30(2) (2021), 237-250
- A.A. Taleb and E. Hanebaly, A Fixed Point Theorem And Its Application To Integral Equations In Modular Function Spaces, Proc. Amer. Math. Soc., 128(2) (1999), 419-426. https://doi.org/10.1090/S0002-9939-99-05546-X
- D. Wardowski, Fixed points of new type of contractive mappings in complete metric space Fixed Point Theory Appl., 2012:94 (2012). https://doi.org/10.1186/1687-1812-2012-94