References
- B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345 (2001). Doi: https://doi.org/10.1142/9789814317665_0031
- G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085
- H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088
- S. M. Moon, S. Y. Lee, and D. Y. Kwon, Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells, Journal of Surface Science Engineering, 55, 133 (2022). Doi: https://doi.org/10.5695/JSSE.2022.55.3.133
- A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells:A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
- K. M. Kim, J. H. Park, H. S. Kim, J. H. Kim, Y. Y. Lee, and K. Y. Kim, Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 37, 8459 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.02.127
- H. McCrabb, E. J. Taylor, A. L. Morales, S. Shimpalee, M. Inman, and J. W. VanZee, Through-Mask Electroetching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels, The Electrochemical Society, 33, 991 (2010). Doi: https://doi.org/10.1149/1.3484593
- M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Valdecker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, Journal of Power Sources, 196, 8967 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.086
- C. Mele and B. Bozzine, Corrosion Performance of Austenitic Stainless Steel Bipolar Plates for Nafion- and Room-Temperature Ionic-Liquid-Based PEMFCs, The Open Fuels & Energy Science Journal, 11, 47 (2012). Doi: https://doi.org/10.2174/1876973X01205010047
- N. D. L. Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, A review of metal separator plate materials suitable for automotive PEM fuel cells, Royal Society of Chemistry, 2, 206 (2009). Doi: https://doi.org/10.1039/B813231N
- Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067
- A. A. Hermas and M. S. Morad, A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions, Corrosion Science, 50, 2710 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.029
- I. H. Oh and J. B. Lee, Corrosion Behavior of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). https://doi.org/10.14773/CST.2010.9.3.129
- S. Feliu, M. Morcillo, and B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55, 883 (1999). https://doi.org/10.5006/1.3284045
- Y. G. You and J. H. Joo, Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates, Journal of Surface Science Engineering, 46, 168 (2013). Doi: https://doi.org/10.5695/JKISE.2013.46.4.168
- K. S. Eom, E. A. Cho, S. W. Nam, T. H. Lim, J. H. Jang, H. J. Kim, B. K. Hong, and Y. C. Yang, Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition, Electrochimica Acta, 78, 324 (2012). https://doi.org/10.1016/j.electacta.2012.06.024
- D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, Prentice Hall, New Jersey (1996).
- P. B. Madakson, I. A. Malik, S. K. Laminu, and I. G. Bashir, Effect of Anodization on the corrosion behavior of Aluminium Alloy in HCl acid and NaOH, International Journal of Materials Engineering, 2, 38 (2012). Doi: https://doi.org/10.5923/j.ijme.20120204.02
- S. K. Singh and A. K. Mukherjee, Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions, Journal of Materials Science & Technology, 26, 264 (2010). Doi: https://doi.org/10.1016/S1005-0302(10)60044-8
- H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, pp. 191, 213, 214, Steel & Metal News (2007).
- W. Ye, Y. Li, and F. Wang, The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization, Electrochimica Acta, 54, 1339 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.08.073
- V. P. Forchhammer and H. J. Engell, Untersuchungen uber den Lochfraf3 an passiven austenitischen Chrom-Nickel-Stahlen in neutralen Chloridlosungen, Materials and Corrosion, 20, 1 (1969). Doi: https://doi.org/10.1002/maco.19690200103
- G. Latha and S. Rajeswari, Pitting and Crevice Corrosion Behaviour of Superaustenitic Stainless Steels in Sea Water Cooling Systems, Corrosion Reviews, 18, 429 (2000). Doi: https://doi.org/10.1515/CORRREV.2000.18.6.429
- D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435
- A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel, Corrosion Science, 159, 108160 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108160
- Z. S. Smialowska, Pitting Corrosion of metals, pp. 24, National Association of Corrosion Engineers, 1440 South Creep Drive, Houston, Texas 77084, USA, (1986).
- A. Garner, Thiosulfate Corrosion in Paper-Machine White Water, Corrosion, 41, 587 (1985). Doi: https://doi.org/10.5006/1.3582988
- R. C. Newman, W. P. Wong, H. Ezuber, and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corrosion, 45, 282 (1989). Doi: https://doi.org/10.5006/1.3577855
- I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683
- ASTM G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p. 3, ASTM International, West Conshohocken, PA, (2004).
- ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, p. 7, ASTM International, West Conshohocken, PA (2004).
- I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163
- H. K. Hwang and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266