DOI QR코드

DOI QR Code

Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate

PEMFC 금속 분리판용 316L 스테인리스강의 전기화학적 특성 및 손상 거동에 미치는 온도 및 염화물 농도의 영향

  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 신동호 (목포해양대학교대학원) ;
  • 김성종 (목포해양대학교기관시스템공학부)
  • Received : 2022.08.17
  • Accepted : 2022.08.25
  • Published : 2022.09.02

Abstract

Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration on the electrochemical characteristics and damage behavior of 316L stainless steel in an accelerated solution simulating the cathodic operating condition of PEMFC(Polymer electrolyte membrane fuel cell). As a result of the experiments, the corrosion current density, damage size, and surface roughness increased as the temperature and chloride concentration increased. In particular, the temperature had a significant effect on the stability of the oxide film of 316L stainless steel. In addition, it was described that the growth of the pit was affected by the chloride concentration rather than the temperature. As a result of calculating the corrosion tendency to compare the pitting corrosion rate and the uniform corrosion rate, the uniform corrosion tendency became larger as the temperature increased. And the effects of chloride concentration on corrosion tendency was different according to temperature.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345 (2001). Doi: https://doi.org/10.1142/9789814317665_0031
  2. G. Hinds and E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates, International Journal of Hydrogen Energy, 40, 2785 (2015). Doi: https://doi.org/10.1016/j.ijhydene.2014.12.085
  3. H. Tawfik, Y. Hung, and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088
  4. S. M. Moon, S. Y. Lee, and D. Y. Kwon, Properties and coating technology of metallic bipolar plate for polymer electrolyte fuel cells, Journal of Surface Science Engineering, 55, 133 (2022). Doi: https://doi.org/10.5695/JSSE.2022.55.3.133
  5. A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells:A review, International Journal of Hydrogen Energy, 30, 1297 (2005). Doi: https://doi.org/10.1016/j.ijhydene.2005.04.016
  6. K. M. Kim, J. H. Park, H. S. Kim, J. H. Kim, Y. Y. Lee, and K. Y. Kim, Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells, International Journal of Hydrogen Energy, 37, 8459 (2012). Doi: https://doi.org/10.1016/j.ijhydene.2012.02.127
  7. H. McCrabb, E. J. Taylor, A. L. Morales, S. Shimpalee, M. Inman, and J. W. VanZee, Through-Mask Electroetching for Fabrication of Metal Bipolar Plate Gas Flow Field Channels, The Electrochemical Society, 33, 991 (2010). Doi: https://doi.org/10.1149/1.3484593
  8. M. Sulek, J. Adams, S. Kaberline, M. Ricketts, and J. R. Valdecker, In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance, Journal of Power Sources, 196, 8967 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.01.086
  9. C. Mele and B. Bozzine, Corrosion Performance of Austenitic Stainless Steel Bipolar Plates for Nafion- and Room-Temperature Ionic-Liquid-Based PEMFCs, The Open Fuels & Energy Science Journal, 11, 47 (2012). Doi: https://doi.org/10.2174/1876973X01205010047
  10. N. D. L. Heras, E. P. L. Roberts, R. Langton, and D. R. Hodgson, A review of metal separator plate materials suitable for automotive PEM fuel cells, Royal Society of Chemistry, 2, 206 (2009). Doi: https://doi.org/10.1039/B813231N
  11. Y. Yang, L. J. Guo, and H. Liu, Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities, International Journal of Hydrogen Energy, 36, 1654 (2011). Doi: https://doi.org/10.1016/j.ijhydene.2010.10.067
  12. A. A. Hermas and M. S. Morad, A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions, Corrosion Science, 50, 2710 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.029
  13. I. H. Oh and J. B. Lee, Corrosion Behavior of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate, Corrosion Science and Technology, 9, 129 (2010). https://doi.org/10.14773/CST.2010.9.3.129
  14. S. Feliu, M. Morcillo, and B. Chico, Effect of Distance from Sea on Atmospheric Corrosion Rate, Corrosion, 55, 883 (1999). https://doi.org/10.5006/1.3284045
  15. Y. G. You and J. H. Joo, Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates, Journal of Surface Science Engineering, 46, 168 (2013). Doi: https://doi.org/10.5695/JKISE.2013.46.4.168
  16. K. S. Eom, E. A. Cho, S. W. Nam, T. H. Lim, J. H. Jang, H. J. Kim, B. K. Hong, and Y. C. Yang, Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition, Electrochimica Acta, 78, 324 (2012). https://doi.org/10.1016/j.electacta.2012.06.024
  17. D. A. Jones, Principles and prevention of corrosion, 2nd, pp. 156, 256, 257, Prentice Hall, New Jersey (1996).
  18. P. B. Madakson, I. A. Malik, S. K. Laminu, and I. G. Bashir, Effect of Anodization on the corrosion behavior of Aluminium Alloy in HCl acid and NaOH, International Journal of Materials Engineering, 2, 38 (2012). Doi: https://doi.org/10.5923/j.ijme.20120204.02
  19. S. K. Singh and A. K. Mukherjee, Kinetics of Mild Steel Corrosion in Aqueous Acetic Acid Solutions, Journal of Materials Science & Technology, 26, 264 (2010). Doi: https://doi.org/10.1016/S1005-0302(10)60044-8
  20. H. S. Kwon, H. S. Kim, C. J. Park, and H. J. Jang, Comprehension of stainless steels, pp. 191, 213, 214, Steel & Metal News (2007).
  21. W. Ye, Y. Li, and F. Wang, The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization, Electrochimica Acta, 54, 1339 (2009). Doi: https://doi.org/10.1016/j.electacta.2008.08.073
  22. V. P. Forchhammer and H. J. Engell, Untersuchungen uber den Lochfraf3 an passiven austenitischen Chrom-Nickel-Stahlen in neutralen Chloridlosungen, Materials and Corrosion, 20, 1 (1969). Doi: https://doi.org/10.1002/maco.19690200103
  23. G. Latha and S. Rajeswari, Pitting and Crevice Corrosion Behaviour of Superaustenitic Stainless Steels in Sea Water Cooling Systems, Corrosion Reviews, 18, 429 (2000). Doi: https://doi.org/10.1515/CORRREV.2000.18.6.429
  24. D. H. Shin and S. J. Kim, Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC, Corrosion Science and Technology, 20, 435 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.435
  25. A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel, Corrosion Science, 159, 108160 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108160
  26. Z. S. Smialowska, Pitting Corrosion of metals, pp. 24, National Association of Corrosion Engineers, 1440 South Creep Drive, Houston, Texas 77084, USA, (1986).
  27. A. Garner, Thiosulfate Corrosion in Paper-Machine White Water, Corrosion, 41, 587 (1985). Doi: https://doi.org/10.5006/1.3582988
  28. R. C. Newman, W. P. Wong, H. Ezuber, and A. Garner, Pitting of Stainless Steels by Thiosulfate Ions, Corrosion, 45, 282 (1989). Doi: https://doi.org/10.5006/1.3577855
  29. I. Olefjord, B. Brox, and U. Jelestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, 132, 2854 (1985). Doi: https://doi.org/10.1149/1.2113683
  30. ASTM G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, p. 3, ASTM International, West Conshohocken, PA, (2004).
  31. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, p. 7, ASTM International, West Conshohocken, PA (2004).
  32. I. J. Jang, K. T. Kim, Y. R. Yoo, and Y. S. Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163
  33. H. K. Hwang and S. J. Kim, Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test, Corrosion Science and Technology, 20, 266 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.266